

Prince Sultan University Orientation Mathematics Program MATH 002 Final Examination Semester II, Term 062 Saturday, June 9, 2007 Time Allowed: 150 minutes

Student Name:	
Student ID #:	Section #:
Teacher's Name:	

Important Instructions:

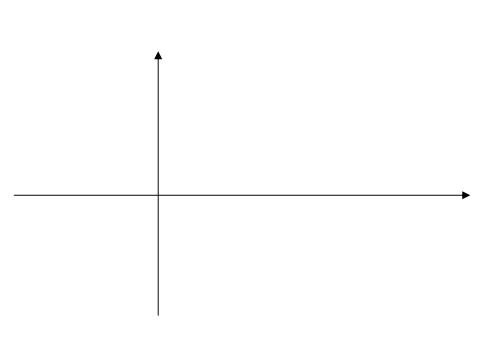
- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 18 problems, some with several parts.. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1,2,3	13	
4,5,6	13	
7	12	
8,9	16	
10,11,12	13	
13,14	9	
15,16	9	
17	8	
18	7	
Total	100	

1. (4 points) Use properties of logarithms to write the logarithmic expression $\frac{1}{3}(\log_2 x^6 - \log_2 y^9) - 5\log_2(x+1) \text{ as a single logarithm whose coefficient is one.}$

2. (3 points) Find the domain of
$$\log\left(\frac{x+1}{x-5}\right)$$

3. (6 points) Solve the following expressions correct to two decimal places. (i) $6^{\frac{x-3}{4}} = \sqrt{6}$


(ii)
$$e^{5x-3}-2=10476$$

(iii) $\log_4(3x+2) = 3$

4. (4 points) Let $\csc \theta = \frac{5}{3}$ where θ an acute angle. Find the exact value of $\cos(\theta + \frac{\pi}{2})$

5. (4 points) Use a right triangle to write $\sec(\sin^{-1}\frac{\sqrt{x^2-16}}{x})$ as an algebraic expression. Assume that x is positive and in the domain of the given inverse trigonometric function.

6. (5 points) Determine the amplitude, period, and phase shift of the function $y = \frac{1}{2}\cos(3x + \frac{\pi}{2})$. Then graph one period of the function.

7. (12 points) Verify the following identities:

(i)
$$\frac{\cos^2 x - \sin^2 x}{1 - \tan^2 x} = \cos^2 x$$

(ii)
$$\frac{\sin x}{\cos x + 1} + \frac{\cos x - 1}{\sin x} = 0$$

(iii)
$$\frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta} = \tan \alpha - \tan \beta$$

- 8. (12 points) Solve the following equations on the interval $[0, 2\pi)$.
 - (i) $\sin^2 x + \sin x 2 = 0$

(ii) $\sin x - \cos x = 1$

(iii) $7\sin^2 x - 1 = 0$

9. (4 points) Find the vertex, focus and directrix of the parabola $(y + 3)^2 = 12(x + 1)$

10.(4 points) Convert $9x^2 + 25y^2 - 36x + 50y - 164 = 0$ to the standard form. Then find the foci and the length of the minor axis.

 $x - y \le 2$ 11. (4 points) Graph the solution set of x > -2 $y \le 3$

12. (5 points) Find the foci and the asymptotes of $(x - 3)^2 - 4(y + 3)^2 = 4$. Then graph the equation.

$$2x + y = 2$$

13.(4 points) Solve the system $x + y - z = 4$. (Show all your steps).
 $3x + 2y + z = 0$

14. (5 points) Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 6 & -12 \\ -12 & 24 \end{bmatrix}$. Perform the

indicated matrix operation. If an operation is not defined, state the reason. i. AB

ii.
$$2BA - \frac{1}{6}C$$

15. (4 points) Evaluate the determinant	0	4	0	2
	-1	3	5	1
	2	-2	0	7
	3	0	0	1

16. (5 points) Find the Augmented matrix and use Gaussian elimination to find the 2x - y - z = 4solution set of the system x + y - 5z = -43x - 6z = 4

- 17.(8 points) Given that $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 3 & 2 & 6 \end{bmatrix}$.
- i. Find the inverse of *A*

x + z = 6ii. Use the inverse to solve the system x + y + 2z = -2. 3x + 2y + 6z = 2 18. (7 points) Use Cramer's rule to solve the system of linear equations: 3x + 2z = 4

5x - y = -4 .4y + 3z = 22