

Prince Sultan University Orientation Mathematics Program MATH 001 Final Examination Semester I, Term 061 Monday, January 22, 2007 Net Time Allowed: 150 minutes

Student Name: _____

Student ID #: _____

Section #: _____

Teacher's Name: _____

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 20 problems, some with several parts.. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1,2,3	15	
4	16	
5,6,7,8	15	
9,10,11,12	14	
13,14,15	14	
16,17,18	14	
19,20	12	
Total	100	

1. (4 points) Simplify each of the following _expressions (i) $(x^3+64)(2x^2-5x)$

(ii)
$$\sqrt[3]{24xy^3} - y \sqrt[3]{81x}$$

2. (9 points) Perform the indicated operations and simplify (i) $(5-2i)^2$

Q20/1.4

(ii)
$$\frac{x^2 - 4}{x^2 + 3x - 10} \div \frac{x^2 + 5x + 6}{x^2 + 8x + 15}$$

Q30/p6

(iii)
$$\frac{3}{x+3} = \frac{5}{2x+6} + \frac{1}{x-2}$$

- 3. (2 points) Determine whether the equation $x^2 + y^2 = 25$ defines y as a function of x Q16/2.1
- 4. (16 points) Solve each of the following equations. (i) (2x - 5)(x + 1) = 2

Q92/1.5

(ii)
$$x^{3} + 5x^{2} - 4x - 20 = 0$$

Q/P.5

(iii) $\sqrt{2x + 19} - 8 = x$

Q19/1.6

(iv)
$$(y - \frac{10}{y})^2 + 6(y - \frac{10}{y}) - 27 = 0$$

5. (3 points) Solve the following inequality and write the answer in the interval form $3 < -4x - 3 \le 19$ Q/1.7

6. (4 points) Let $f(x) = -3x^2 + x - 1$. Find and simplify the difference quotient: $\frac{f(x+h) - f(x)}{h}, \quad h \neq 0$

Q16/2.2

7. (4 points) Find the center and radius of the circle whose equation is $x^{2} + y^{2} - 4x + 2y - 4 = 0$

Q103/Rev. 2.8

8. (4 points) Solve the inequality and graph the solution set of on a real number line: $\frac{1}{x+1} \ge \frac{2}{x-1}$

Q64/3.6

9. (4 points) Write an equation of the line passing through (-3,6) and **perpendicular** to the line whose equation is $y = \frac{1}{3}x + 4$. Graph the two lines in the same rectangular coordinate system.

Q36/Rev. 2.4

10.(4 points) Let $f(x) = \frac{\sqrt{x-2}}{x-5}$. (i) What is the domain of f(x).

(ii)Find the y-intercept.

Q27/2.6

11. (3 points) Show that the polynomial function $f(x) = 3x^3 - 10x + 9$ has a real zero between -3 and -2.

Check7/3.2

12. (3 points) Use the Leading Coefficient Test to determine the graph's end behavior for: $f(x) = -11x^4 - 6x^2 + x + 3$.

Q24/3.2

13. (6 points) Given f(x) = 2-5x and $g(x) = \frac{2-x}{5}$, find and simplify each of the following: (i) $\left(\frac{g}{f}\right)(2)$

 $(ii)(f \circ g)(3)$

(iii) $(g \circ f)(x)$

- 14. (4 points) Let $f(x) = 3x^2 6x$.
 - (i) Determine, without graphing, whether the function has a minimum value or a maximum value, (Why?).
 - (ii) Find the minimum value or maximum value and determine where it occurs.
 - (iii) Identify the function's domain and its range.

Q44/3.1

15.(4 points) Use the graph of the function $f(x) = \sqrt{x}$, to sketch the graph of the function g(x) = -f(x+1).

Q72/2.5

16. (5 points) Use synthetic division to divide $f(x) = x^5 - 2x^4 - x^3 + 3x^2 - x + 1$ by x - 2. State the quotient q(x) and the remainder r(x).

Q32/3.3

17. (5 points) Find a third-degree polynomial function f(x) with real coefficients that has -5, and 4+3i as zeros such that f(2)=91.

Q27/3.4

18.(4 points) Solve the equation $3x^3 + 7x^2 - 22x - 8 = 0$ given that $\frac{-1}{3}$ is a root.

Q46/3.3

- 19. (4 points) Let $f(x) = (x-2)^3$
 - (i) Find an equation for $f^{-1}(x)$.
 - (ii) Use interval notation to give the domain and the range of f^{-1} .
- 20. (8 points) Let $f(x) = \frac{4x^2}{x^2 + 1}$.
 - (i) Write the equation of the horizontal asymptote, if any.
 - (ii) Write the equations of the vertical asymptotes, if any.
 - (iii) Find the Domain of the rational function f(x).
 - (iv) Graph the function f(x).

Q62/3.5