

Prince Sultan University Department of General sciences/Mathematics MATH 001 Final Examination Term 171

Monday, January 01, 2018 Time Allowed: 3 hours

Student Name:		
Student ID #:	 Section #:	

Teacher's Name:

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has 16 problems, some with several parts and a total of 8 pages including the cover page. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1,2,3	18	
4	12	
5,6,7,8	17	
9	16	
10,11	12	
12,13,14	14	
15,16	11	
Total	100	

Q.1 (12 points) Perform the indicated operations and simplify.

a)
$$\sqrt[3]{\frac{(3^2 x^{-1})^2 y^6 z^4}{3x^4 z}}$$

b)
$$\sqrt{48x^4y} - 2x^2\sqrt{12y} + x^2\sqrt{27y}$$

c)
$$(2x - 3y)^2$$

Q.2 (3 points) Find the equation (in slope intercept form) of a line passing through the point (6, -2) and has slope $\frac{4}{3}$.

Q.3 (3 points) Find the values of k in the quadratic equation $x^2 + 4kx + 5 = 0$ if the discriminant is 12

Q.4 (12 points) Solve each of the following equations. Give the solution set.

a)
$$2[2x-1+3(x+3)] = 6x+4$$

b)
$$\frac{6x}{x+3} = \frac{2x}{x+3} + \frac{4x^2 + 36}{x^2 - 9}$$

c)
$$2x^2 - 12x - 8 = 0$$

Q.5 (4 points) Find the value of k if the line kx+3y-6=0 is perpendicular to the line passing through (4,-2) and (-8,4).

Q.6 (4 points) Let
$$f(x) = \frac{9}{x^2 - 1}$$
 and $g(x) = \sqrt{x - 1}$, find
a) $(f \circ g)(x)$

b) (*g* ∘*f*)(2)

Q.7 (4 points) Find the inverse function $f^{-1}(x)$ for $f(x) = \frac{x+2}{x-3}$

Q.8 (5 points) Use the graph of the function f to determine each of the following:

- a) The **domain** of f
- b) *f*(-3)
- c) The intervals on which f is **increasing**, if any
- d) Any relative maximum.
- e) Does the function f have an inverse? Explain.

Q.9 (16 points) Solve the inequality. Graph the solution set on a real number line and give the solution set in interval notation.

a)
$$-3 \le \frac{2x+5}{3} < 6$$

b)
$$|5x+6| \ge 4$$

c) $4x^3 + 7x^2 > 2x$

d)
$$\frac{x^2 - 8}{x + 1} \le 4$$

Q.10 (7 points) Consider $f(x) = -2x^2 + 4x + 6$ for answering the following questions.

a) Find the **coordinates of the vertex** of the graph of f

- b) Find the equation of the axis (line) of symmetry.
- c) Use the vertex and the intercepts to graph f

d) Give the **range** of f.

Q.11 (5 points) Use <u>synthetic division</u> to solve the equation: $x^4 - 4x^3 - 9x^2 + 16x + 20 = 0$ given that 5 is a zero of the function $f(x) = x^4 - 4x^3 - 9x^2 + 16x + 20$

Q.12 (5 points) Use the given equation of the circle to find the circle's center and radius. $x^{2} + y^{2} - 4x + 10y + 13 = 0$

Q.13 (5 points) Find a 4th degree polynomial function with real coefficients that has the zeros: 3(with multiplicity 2) and 2i; and with f(1) = -100.

Q.14 (4 points) Use <u>long division</u> to divide $4x^5 - 2x^3 + 5x^2 - 10$ by $x^2 + 1$. (Write the <u>quotient</u> and the <u>remainder</u>)

Q.15 (3 points) Find the **domain** of the function: $f(x) = \frac{1}{x-4} + \frac{1}{\sqrt{7-x}}$

Q.16 (8 points) Given the polynomial $P(x) = 2x^3(x-1)^2(x+2)^4$. a) Find the **degree** of the polynomial.

- b) Determine the **end behavior** of the polynomial.
- c) Find the zeros of the polynomial and their multiplicities.

d) **Sketch** the graph of the polynomial (**Show all the details.**)