

Prince Sultan University Orientation Mathematics Program

MATH 001 Final Examination Semester II, Term 092 Thursday, June 10, 2010 Time Allowed: 150 minutes

Student Name:	
Student ID #:	Section #:
Teacher's Name:	

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has 17 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1	21	
2,3,4,5	16	
6,7	17	
8,9,10,11	15	
12,13,14	15	
15,16,17	16	
Total	100	

Q.1 (21 points, 1.5 each) Write only the final answer for each question:

#	Questions	Answers
1	Given $f(x) = x^2 + 2x + 4$. Evaluate $f(10)$.	
2	Simplify $7(4x^2 + 3x) + 2(5x^2 + x)$.	
3	Given the circle equation $(x+2)^2 + (y-5)^2 = 20$. Find the center and radius.	
4	Multiply $(2x + 3y)^2$.	
5	Evaluate $(3+4i)(3-4i)$.	
6	Subtract $5\sqrt[3]{81} - 4\sqrt[3]{3}$.	
7	Perform the operation $(x^3 + 7xy - 5y^2) - (6x^3 - xy + 4y^2)$.	
8	Find the domain of the rational function $\frac{x+2}{2x(x+9)}$.	
9	Determine whether $f(x) = x^3 + 2$ is odd, even, or neither.	
10	Find the midpoint of the line segment with end points $(2,7)$ and $(-3,5)$.	
11	Given $f(x) = \sqrt{x+6} + 5$ and $g(x) = 3x+4$. Evaluate $(f \circ g)(x)$.	
12	Find the coordinates of the vertex for the parabola defined by the function $f(x) = -3x^2 + 12x - 7$.	
13	What is the degree of the polynomial $f(x) = (x-1)(x+2)^2$.	
14	What is the inverse function $f^{-1}(x)$ for $f(x) = 2x + 9$.	

Show all steps for each question

Q.2 (4 points) Perform the indicated operations and simplify as much as possible the algebraic expression $\frac{x^2 - 25}{2x - 2} \div \frac{x^2 + 10x + 25}{x^2 + 4x - 5}.$

Q.3 (2 points) Write the expression $6(-3 + \sqrt{-25})$ in the standard form a+bi. (Do not use a calculator).

Q.4 (4 points) Find all values of x satisfying the condition $y_2 - y_1 = -12$ given that $y_1 = 3(2x+5)+4$ and $y_2 = 10(x-2)+15$.

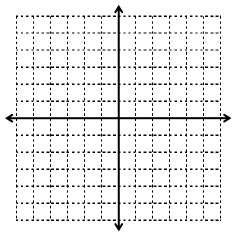
Q.5 (6 points) Factor each of the following completely

i) $x^4(x-4) - 81(x-4)$

ii) $x^3 + 27$

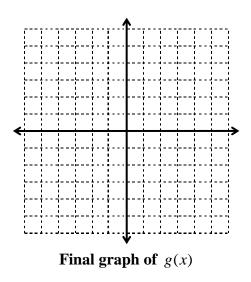
Q.6 (12 points) Solve each of the following equations. (Do not use a calculator).

i)
$$\frac{2}{x} + 3 = \frac{5}{2x} + \frac{13}{4}$$

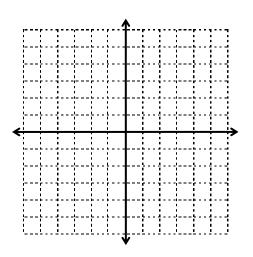

ii) $2x^3 + 3x^2 = 8x + 12$

iii)
$$x^{\frac{2}{5}} - 13 = -9$$

Q.7 (5 points) Solve the following rational inequality $\frac{x+4}{2x-1} \le 3$ and graph the solution set on a real number line .


Q.8 (3 points) Find and simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$, $h \neq 0$ for the function f(x) = 5x - 7.

Q.9 (2 points) Use the intercepts to graph the linear equation 4x - 2y + 12 = 0.


Q.10 (4 points) Write the equation of the straight line passing through (-8,4) and perpendicular to the line whose equation is y + 2x = 1.

Q.11 (6 points) Use the graph of the basic function $f(x) = \sqrt{x}$ to graph the function $g(x) = 2\sqrt{x+1}-1$.

Q.12 (6 points) Consider the quadratic function $f(x) = (x-3)^2 + 1$.

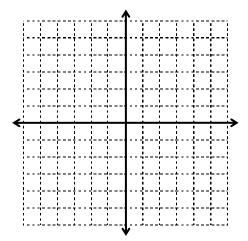
i. Give its domain, range and axis of symmetry and determine the minimum or maximum value.

ii. Sketch the graph.

Q.13 (3 points) Use the **Intermediate Value Theorem** to show that the polynomial function $f(x) = -2x^3 + 5x + 1$ has a real zero between 1 and 2.

Q.14 (6 points) Consider the polynomial function $f(x) = -2x^3(x-1)^2(x+5)$.

- a. Use the **Leading Coefficient Test** to determine the end behavior of the graph of f(x).
- b. Find the zeros of the function and the multiplicity of each zero.


c. State whether the graph crosses or touches the *x*-axis at each zero.

Q.15 (3 points) Given $f(x) = 4x^2 + 3x^3 + 3 - 5x$. Use the synthetic division and the remainder theorem to find f(-4).

Q.16 (5 points) Find a third degree polynomial function f(x) with real coefficients that has 1 and 5*i* as zeros and such that f(-1) = -104.

Q.17 (8 points) consider the rational function $f(x) = \frac{-2}{x^2 - x - 2}$ i) Find the *x* and *y*-intercepts of the function (if there are any).

ii) Find the vertical and horizontal asymptotes of f(x) (if there are any).

iii) Graph the function f(x)