Prince Sultan University

Department of Mathematical Sciences

Major II Exam

Semester II, 2005 Spring (042) 23rd April, 2005

MATH 111 - CALCULUS I

Time Allowed : 100 minutes Maximum Points: 100 points

Name of the student : _____

ID number : _____

:_____

Section

~

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of</u>
 <u>7 pages and 10 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
		30016
Q.1	10	
Q.2	6	
Q.3	28	
Q.4	10	
Q.5	6	
Q.6	10	
Q.7	10	
Q.8	5	
Q.9	10	
Q.10	5	
Total	100	

0.1 For
$$y = 3x^2 - 2$$

a) Find the average rate of change of y with respect to x over the interval [1,4].

b) Find the instantaneous rate of change of y with respect to x at $x_0 = 2$

<u>Q.2</u> Use the definition of the derivative to find f'(x), where $f(x) = x^2 - x$. (6 points)

<u>Q.3</u>: Find $\frac{dy}{dx}$ for the following functions: (simplify your answer as much as possible)

a)
$$y = (x-2)^2 (3-2x)^3$$
 (28 points)

b)
$$y = \frac{\sin x}{x \cos x}$$

c)
$$y = \sqrt{\sin(7x + \ln(5x))}$$

d)
$$y = x (\sin^{-1} x)^2$$

e)
$$y = e^{\tan^{-1}\sqrt{3x}}$$

$$f) \quad e^{x-y} = \ln \left[\frac{x}{y} \right]$$

g) $y = x^3 \ln(\cos x^3) + \cos(\ln x^2)$

Q.4: Determine the equation of the tangent line to the given curve at the indicated point or x-value: a) $y = x^2 - 2x$ at x = 2 (10 points)

b) $xy^3 - 3x^2 = 5$ **at** (1,2)

<u>0.5</u>: Assume that h(x) = f(g(x)), where both f and g are differentiable functions.

If g(-1) = 2, g'(-1) = 3, and f'(2) = -6, what is the value of h'(-1)? (6 points)

<u>*Q.6*</u> Find the values of x and y at which the curve of the following function has horizontal tangent lines. (10 points)

 $4x^2 + y^2 - 8x + 4y + 4 = 0$

<u>**Q.7**</u> Use implicit differentiation to find $\frac{dy}{dx}$: (10 points)

a) $\sin(x + y) = y \cos x$

b)
$$e^{xy} = x^2 y$$

<u>Q.8</u>: Use the method of logarithmic differentiation to find $\frac{dy}{dx}$:

a)
$$y = x^{\ln x} (\sec x)^{3x}$$

b)
$$y = \frac{e^x \sqrt{x^2 + 3}}{(x^3 + 2)^5 (x^2 + 1)^2}$$

<u>Q.9</u>: Find $\frac{d^2y}{dx^2}$ for the following functions: (simplify your answer as much as possible)

a) $y = x \sin x - 3 \cos x$

(10 points)

b)
$$y = \frac{x-1}{x+1}$$

0.10: Find
$$\frac{dy}{dx}$$
 if $y^3t + t^3y = 1$ and $\frac{dt}{dx} = \frac{1}{\cos t}$ (5 points)