

Prince Sultan University

Department of Mathematical Sciences Major II Exam

Semester I, 2014 FALL (151) December 02, 2015

MATH 211 – Business Calculus

Time Allowed : 90 minutes Maximum Points: 100 points

Name of the student:				
ID number	:			
Section	:			

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 12 problems, some with several parts and a total of 6 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1 , Q.2	22	
Q.3 , Q.4 , Q.5	19	
Q.6 , Q.7	19	
Q.8 , Q.9	22	
Q.10 , Q.11 , Q.12	18	
Total	100	

Q.1(15 points): Given $f(x) = -x^4 + 4x^3 + 5$

a) Find all the **critical points** of the function and classify them as **relative maximum or minimum**.

- b) Find the intervals of **increase** and **decrease**, if any.
- c) Find the intervals of **concavity** and **the inflection points**, if any.
- d) Sketch the graph of f showing all features.

Q.2 (7 points): Use the <u>second derivative test</u> to find the relative maxima or relative minima, if any of $f(x) = \frac{x^2}{x+1}$

Q.3 (8 points): Find the **absolute maximum and minimum** of $f(x) = -2x^3 + 3x^2 + 12x - 5$ on the interval $0 \le x \le 3$

Q.4 (6 points): The cost of producing x units of a certain commodity is $C(x) = 3x^2 + 4x + 4$ dollars. If the price is p(x) = (52 - x) dollars per unit, determine the level of production that **maximizes profit**.

Q.5 (5 points): A company determines that if x thousand dollars are spent on advertising a certain product, then S(x) units of product will be sold, where $S(x) = -2x^3 + 27x^2 + 132x + 207$; $0 \le x \le 17$. How much should be spent on advertising to **maximize sales**?

Q.6 (10 points): The price p(q) at which q units of a certain commodity can be sold is given by p(q) = 37 - 2q. The total cost C(q) of producing the q units is $C(q) = 3q^2 + 5q + 75$.

- a) Find the **marginal revenue** and the **marginal cost**.
- b) Find the **average cost.**
- c) Find the level of production, q at which average cost is minimized.

<u>Q.7 (9 points)</u>: Solve the equation. **a**) $\log_5(x+1) = 2$

b)
$$3\ln x - \frac{1}{2}\ln x^4 = 9$$

c)
$$5 = 7 - 3e^{-2x}$$

Q.8 (16 points): Find the **derivative:** (Simplify your answer)

a)
$$f(x) = \frac{x}{e^{x^2}}$$

b)
$$f(x) = e^{-5x} \ln \sqrt{x}$$

$$x = \ln\left(2x^3 - 1\right)^4$$

d)
$$y = \frac{e^{2x} (2x-1)^6}{(x^3+5)^2 (4-7x)}$$

Q.9 (6 points): Find the equation of the tangent line to $f(x) = (x + 1)e^{-2x}$ at x = 0

Q.10 (4 points): How much money should be invested today at 5% compounded quarterly so that 10 years from now it is worth \$25,000?

Q.11 (4 points): How long will it take \$2,000 to grow to \$10,000 if interest is 7% compounded continuously? (Round your answer to nearest whole year)

Q.12 (10 points): The demand, q = D(p) of a particular commodity is given by $D(p) = \sqrt{400 - 0.01p^2}$ where *p* is the price at which *q* units can be sold.

- a) Find the elasticity of demand
- b) Find the elasticity of demand at p = \$50
- c) Determine the values of p for which the demand is elastic, inelastic, and of unit elasticity.