

Prince Sultan University

Department of Mathematical Sciences

Semester II, 2014 SPRING (Term 132) April 21, 2014

MATH 111 – Calculus I Major II Exam

Time Allowed : 60 minutes Maximum Points : 60 points

Name of the student: _____

ID number :_____

Section :-----

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your <u>mobile</u> phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 8 problems, some with several parts and a total of 5 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1 , Q.2 , Q.3	32	
Q.4 , Q.5 , Q.6	16	
Q.7 , Q.8	12	
Total	60	

<u>Q.1 (points)</u>: Use the limit definition of derivative to find the derivative of $f(x) = \frac{1}{\sqrt{x-3}}$

<u>Q.1 (24 points)</u>: Find the derivative (Simplify as much as possible)

(i)
$$f(x) = \sqrt{x} + \frac{2}{\sqrt[3]{x^4}} - 5x^8$$

(ii) $y = \frac{e^{5x}\sqrt{x^3 - 4}}{(x^2 + 4)^4 (x^3 - 1)^3}$ or $y = \sqrt[5]{\frac{(2x^2 + 5)^3 \tan^6(x)}{\sqrt{x + 1}}}$

- (iii) $y = 3^{2x^2} \cdot \sqrt{x}$
- (iiii) $y = \ln \left[\frac{(x-2)^3}{\sqrt{2x-1}} \right]$
- (iv) $y = (x^2)^{4x}$ or $y = x^{\sec(x)}$

(v)
$$f(x) = (1 + \cos^3(x^4))^{10}$$

- (vi) $f(x) = \sin \sqrt{\ln(1-3x)}$
- (vii) $y = \sqrt{x} \sin^{-1}(\sqrt{x})$, $x \in (0,1)$
- (iv) $f(x) = \sqrt{\cos^{-1}(x^2)}$
- (v) $y = \sin^{-1}(\sqrt{x+1})$, $x \in (-1,0)$

(viii)
$$y = e^{3x} \ln(\tan^{-1}(6x))$$

(v) $y = \tan^3\left(\sqrt{\cot(7x)}\right)$

(vi)
$$f(x) = e^{xy} - x^3 + 3y^2 = 11$$
 or $x^3y^2 - 5x^2y + y = \sin(x)$

Q.2 (6 points): Find $\frac{d^{82}}{dx^{82}}(x \cos(x))$

Q.2 (6 points): Let *f* and *g* be functions such that f(1) = -1, f'(1) = 2, and g'(-1) = -4. Let $F(x) = (f(x))^2 - (g \circ f)(x)$. Find F'(1)

Q.2 (6 points): Find all the points (x, y) on the curve of $y = x^3 + 2x^2 - x + 2$ where the tangent line has slope -2

Q.2 (6 points): At what point(s) is(are) the tangent line to the graph of $y = 2x^3 - 8x + 1$ is perpendicular to the line 2y - x + 1 = 0.

Q.2 (6 points): Find the limit:

i)
$$\lim_{x \to 0} \frac{5x^3 - 3\sin^2(5x)}{x^2}$$

ii)

Q.2 (6 points): Find an equation of the tangent lines to the graph of $x^2 + 2xy - y^2 + x = 2$ at x = 1

Q.3 (4 points):

Q.4 (5 points):

Q.5 (5 points):

Q.6 (6 points): Two cars start moving from the same point. One travels north at 60 km/h and the other travels west at 80 km/h. At what rate is the distance between the cars increasing 2 hours later?

Q.6 (6 points): A spherical snowball is melting such that its volume is decreasing at a rate of $0.5 \text{ cm}^3 / \text{min}$. When the diameter is 8 cm, at what rate is the radius decreasing?

Q.7 (6 points): Find all numbers **c** that satisfy the conclusion of the Mean Value Theorem of the function f on the interval [-1,2], where $f(x) = x^3 - 2x$.

Q.8 (6 points): Find the **absolute** minimum and maximum values of f on the given interval. $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$; [-2,3]