Prince Sultan University

Department of Mathematical Sciences

Major II Exam

Semester II, 2015 SPRING (142)

20th April, 2015

MATH 111 – CALCULUS I

Time Allowed : 90 minutes Maximum Points: 80 points

Name of the student: _____

ID number

Dr. Kamal Abodayeh	Dr. Nabil Mlaiki	Mr. Khaled Naseralla	
Section 223	Section 225	Section 224	
8 9	11 12	10 11	

Important Instructions

:

- You may use a SCIENTIFIC CALCULATOR that does NOT have GRAPHING capabilities.
- You may **NOT** borrow a calculator from anyone.
- Answer **ALL** the questions.
- Show all the key steps of your work in the space provided for each question. Please indicate your **FINAL** answers clearly.
- You may use the **BACK** of the pages for extra space, but be sure to indicate that on the page with the problem.
- There should be **NO** talking during the exam.
- This exam has **10** problems, some with several parts. Make sure your paper has all these problems.

Question	Maximum Points	Points Earned
1	23	
2,3,4	17	
5	12	
6,7,8	16	
9 , 10	12	
Total	80	

20	

<u>O.1 (23 points)</u>: Find the derivative and <u>simplify</u> your answer. a) $y = \tan^{-1}(\tanh(3x))$

b)
$$y = 3^{x \ln(x)}$$

c)
$$y = \frac{x^2 \sqrt{x^4 - 1}}{(2x+1)e^x}$$

d)
$$f(x) = \cosh^2\left(\frac{x}{x+1}\right)$$

e)
$$g(x) = \left(\sin^{-1}(5x^2)\right)^3$$

f)
$$3x^2 + 3 = \ln(5xy^2)$$

g)
$$y = x^{\sec(x)}$$

Q.2 (5 points): Let f and g be functions such that f(1) = -1, f'(1) = 3, and g'(-1) = -4. Let $F(x) = 2(f(x))^2 - g(f(x))$. Find F'(1).

<u>Q.3 (6 points)</u>: Find the equation of the tangent lines to the curve: $x^2 + 4xy + y^2 = 13$ at the point (2,1)

Q.4 (6 points): Find the equation of the **normal** line to the curve of $y = \frac{x^2 + 1}{2\tan(x) + 1}$ at the point (0,1).

<u>Q.5 (12 points)</u>: Prove the identity: a) $\cosh(x) - \sinh(x) = e^x$

b) $\operatorname{coth}^{2}(x) - 1 = \operatorname{csc} h^{2}(x)$

c) Show that $\tanh^{-1}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$, -1 < x < 1

Q.6 (5 points): Show that the derivative of
$$y = x \cosh^{-1}\left(\frac{x}{3}\right) - \sqrt{x^2 - 9}$$
 is $y' = \cosh^{-1}\left(\frac{x}{3}\right)$

<u>Q.7 (5 points)</u>: Find $\frac{d^{43}}{dx^{43}}(x.\cos(x))$

Q.8 (6 points): Two cars start moving from the same point. One travels north at 50 km/h and the other travels west at 70 km/h. At what rate is the distance between the cars increasing 2 hours later?

Q.9 (8 points): Find the limit:

a)
$$\lim_{x \to 0} \frac{\tan^2(5x) + \sin^2(3x)}{x^2}$$

b)
$$\lim_{x \to -3} \frac{\sin(x+3)}{x^2 + 8x + 15}$$

<u>Q.10 (4 points)</u>: If a snow ball melts at a rate of $0.5 \text{ cm}^3 / \text{min}$. Find the rate at which the radius decreases when the radius is 5 cm.