Prince Sultan University

Department of Mathematical Sciences Major I Exam

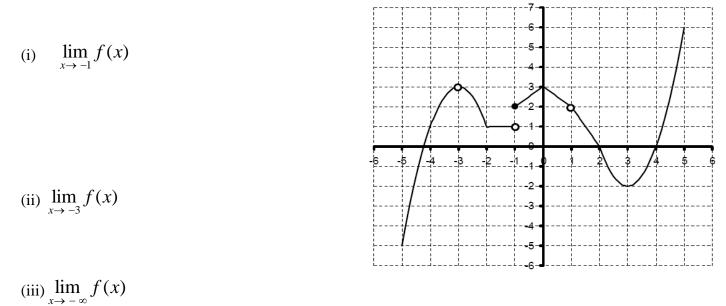
Semester I, 2012 FALL (121) 13th October 2012

MATH 111 – CALCULUS I

Time Allowed : 90 minutes Maximum Points: 60 points

Name of the student: _____

ID number


Dr. Abdelouahed Hamdi		Mr. Abid Zargar	Mr. Khaled Naseralla
Section 250	Section 224	Section 249	Section 223
10 11	11 12	8 9	10 11

Important Instructions

:____

- You may use a **SCIENTIFIC CALCULATOR** that does **NOT** have **GRAPHING** capabilities.
- You may **NOT** borrow a calculator from anyone.
- Answer **ALL** the questions.
- Show all the key steps of your work in the space provided for each question. Please indicate your **FINAL** answers clearly.
- You may use the **BACK** of the pages for extra space, but be sure to indicate that on the page with the problem.
- There should be **NO** talking during the exam.
- This exam has **11** problems, some with several parts. Make sure your paper has all these problems.

Question	Maximum Points	Points Earned
1 , 2 , 3	11	
4 , 5	24	
6,7,8	12	
9 , 10 , 11	13	
Total	60	

Q.2 (4 points): Given $f(x) = x^2 - 4x$ and $g(x) = \sqrt{2-3x}$, determine:

- (i) $f \circ g(x)$
- (ii) $f(2) \cdot g(2)$
- (iii) g(f(1))
- (iv) Domain of $f \circ g$

<u>Q.3 (3 points)</u>: Find the inverse function (if any): $f(x) = \frac{2x-3}{1-4x}$

Q.4 (20 points): Evaluate the limit, if it exists.

(i)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 2x - 3}$$

(ii)
$$\lim_{x \to 3} \frac{\frac{x}{x+2} - \frac{3}{5}}{x-3}$$

(iii)
$$\lim_{x \to -2} \frac{x^3 + 8}{|x^2 - 4|}$$

(iii)
$$\lim_{h \to 0} \frac{2(-3+h)^2 - 18}{h}$$

(iv)
$$\lim_{t \to +\infty} 3t - \sqrt{9t^2 + 4t + 1}$$

(vii)
$$\lim_{x \to -\infty} \frac{1 - e^{-2x}}{1 + 2e^{-2x}}$$

<u>O.5 (4 points)</u>: Begin by graphing $f(x) = \sqrt{x}$, then use transformations to sketch the graph of $g(x) = 3 - \sqrt{x-1}$

Q.6 (4 points): Solve for $x : 2\log(x) + \log(x^2 - 1) = \log(\log_2(4))$

Q.7 (5 points): Find the **Domain and the Range** of: (i) $f(x) = -2x^2 + 5x - 4$

(ii)
$$g(x) = \frac{1 - 4^{-2x}}{3}$$

<u>Q.8 (3 points)</u>: Show that $e^x + 2x = 3$ has a root in the interval (0,1)

Q.9 (4 points): Find the value of *k*, if possible, that will make the function continuous everywhere $f(x) = \begin{cases} x + 2k & x \le 1 \\ kx^2 + x + 1 & x > 1 \end{cases}$

Q.10 (6 points): Discuss the continuity of f. Find the numbers at which f is not continuous.

$$f(x) = \begin{cases} \frac{x-1}{x+2} & x \le 1\\ -1+\frac{1}{x} & 1 < x < 4\\ 2\sqrt{x^2-1} & x \ge 4 \end{cases}$$

<u>Q.11 (3 points)</u>: Find the horizontal asymptote(s) of the curve $f(x) = \frac{x^2 \sin(x)}{x^4 + 1}$