Prince Sultan University

Department of Mathematical Sciences Major I Exam

Semester II, 2015 SPRING (142) 11th March, 2015

MATH 111 – CALCULUS I

Time Allowed : 90 minutes Maximum Points: 80 points

Name of the student: _____

ID number

Dr. Kamal Abodayeh	Dr. Nabil Mlaiki	Mr. Khaled Naseralla
Section 223	Section 225	Section 224
8 9	11 12	10 11

Important Instructions

•

- You may use a SCIENTIFIC CALCULATOR that does NOT have GRAPHING capabilities.
- You may **NOT** borrow a calculator from anyone.
- Answer **ALL** the questions.
- Show all the key steps of your work in the space provided for each question. Please indicate your **FINAL** answers clearly.
- You may use the **BACK** of the pages for extra space, but be sure to indicate that on the page with the problem.
- There should be **NO** talking during the exam.
- This exam has **11** problems, some with several parts. Make sure your paper has all these problems.

Question	Maximum Points	Points Earned
1 , 2	14	
3 , 4	14	
5,6,7	16	
8	20	
9 , 10 , 11	16	
Total	80	

<u>Q.1 (6 points)</u>: Find the Domain of each function.

a)
$$f(x) = \frac{1}{\sqrt{x+2}-3}$$

b)
$$f(x) = \sqrt{2 - 5^x}$$

<u>Q.2 (8 points)</u>: Let $f(x) = -1 + 2\ln(-x + 3)$

a) Use transformations to sketch the graph of f. Show the location of the **asymptote** and the *x* or *y* intercepts, if any. (Without using a table of values)

- b) State the domain and range of f.
- c) Find the inverse function of f.

<u>Q.3 (4 points)</u>: If $f(x) = \ln(x+5)$ and $g(x) = x^2 - 9$, find:

a) $f \circ g$

b) Domain of $f \circ g$

Q.4 (10 points):

Use the graph of f(x) shown to answer the questions

- a) $\lim_{x\to -\infty} f(x)$
- b) $\lim_{x \to +\infty} f(x)$
- c) $\lim_{x \to 6^+} f(x)$
- d) $\lim_{x\to 0} f(x)$

- e) *f*(2)
- f) Is f continuous at x = 2? Why or why not?
- g) At what number(s) is(are) f <u>not differentiable.</u> <u>Give reasons.</u>

<u>**Q.5 (4 points)</u>:** Show that $\lim_{x \to 0} x^2 \cos(\frac{1}{x}) = 0$ </u>

<u>Q.6 (6 points)</u>: Use the definition to find the derivative of the function: $f(x) = \frac{4}{x+5}$.

<u>Q.7 (6 points)</u>: Find the equation of the tangent line to the curve of $y = x^2 - x$ at x = 2

<u>Q.8 (20 points):</u> Evaluate the limit, if it exists.

a)
$$\lim_{x \to 5} \frac{x^2 - 25}{x^2 - 4x - 5}$$

b)
$$\lim_{y \to -\infty} \frac{2-x}{\sqrt{9+6x^2}}$$

c)
$$\lim_{x \to -3^{-}} \frac{2x}{x+3}$$

$$\mathbf{d}) \quad \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right)$$

e)
$$\lim_{x \to 0} \left(\frac{\sqrt{x+1} - \sqrt{1-x}}{x} \right)$$

<u>Q.9 (4 points)</u>: Show that there is a root of the equation: $\sqrt[3]{x} = 1 - x$ in the interval (0,1).

<u>Q.10 (6 points)</u>: Study the continuity of the function. $\sin(x)$ if x < 0

$$f(x) = \begin{cases} \sin(x) & \text{if } x < 0\\ 1 & \text{if } x = 0\\ x - x^2 & \text{if } x > 0 \end{cases}$$

Q.11 (6 points): Find the vertical and the horizontal asymptotes, if any of the function. Show your work $y = \frac{1 - e^x}{1 - 2e^x}$