Prince Sultan University

Department o f Mathematical Sciences

Major I Exam

Semester II, 2005 Spring (042) 23rd March, 2005

MATH 111 - CALCULUS I

Time Allowed : 90 minutes Maximum Points: 100 points

Name of the student : _____

ID number : _____

:_____

Section

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of</u>
 <u>7 pages and 14 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
Q.1	6	
Q.2	5	
Q.3	5	
Q.4	5	
Q.5	6	
Q.6	6	
Q.7	8	
Q.8	21	
Q.9	8	
Q.10	5	
Q.11	5	
Q.12	5	
Q.13	10	
Q.14	5	
Total	100	

<u>*Q.1*</u>: Use the equation : $y = x^2 - 6x + 8$ to answer the following questions:

(6 points)

- a) For what value at x is y = 15 ?
- b) For what value at x is $y \le 15$?

c) What is the minimum value of \mathcal{Y} ?

<u>*Q.2:*</u> Find the <u>slope-intercept</u> form of the equation of the line perpendicular (5 points) To: 3x + 2y = 5 and passes through the point (0,3)

<u>*Q.3:*</u> Find an equation for the family of lines passing through the point (-2, 3). (5 points) Sketch two of the lines.

<u>*Q.4:*</u> State the geometric property common to all the lines in the family: (5 points)

$$Ax - 2y + 6 = 0$$

<u>*Q.5:*</u> Find the natural domain of each of the following functions:

a)
$$f(x) = \sqrt{\frac{8x-4}{x-3}}$$

b)
$$g(x) = \frac{x^2}{x^2 - 3x + 2}$$

$$f(x) = 2|7+x|-3|x-4|$$

Q.7: Given
$$f(x) = \frac{x}{x^2 + 1}$$
 and $g(x) = \frac{1}{x}$ find: (8 points)
a) $(f + g)(x)$

b) $(f \circ g)(x)$ and state its domain

d) (g(f(2)))

3

c) $(f \circ g)(1)$

a)
$$\lim_{x \to \infty} \frac{5x^3 + 2x}{7x^4 + 3x^2 + 2}$$

b)
$$\lim_{x \to -\infty} \frac{4x - 3}{\sqrt{7x^2 + 2}}$$

c)
$$\lim_{x \to 2^{-}} \frac{x}{x^2 - 4}$$

d)
$$\lim_{x \to 4} \frac{x - 4}{\sqrt{x + 5} - 3}$$

e)
$$\lim_{x \to 0} \frac{\sin x - 7x}{x \cos x}$$

f)
$$\lim_{x \to 0} \frac{2x + \sin 3x}{x}$$

g)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

 $\underline{0.9:}$ a) Find the value of c which makes the function continuous.

$$f(x) = \begin{cases} cx + 5 & x \le 2\\ 7x - 2 & x > 2 \end{cases}$$

b) Discuss the continuity of the function $f\,$. Find all the numbers, if any, at which $f\,$ is not continuous.

$$f(x) = \begin{cases} 2x - 4 & x \le -1 \\ 2x^2 + 6x - 4 & -1 < x \le 1 \\ 4 & x > 1 \end{cases}$$

<u>Q.10</u>: Suppose that f and g are continuous functions. Given that $\lim_{x \to 4} f(x) = 0$, and $\lim_{x \to 4} g(x) = -3$. Find: $\lim_{x \to 4} \frac{xg(x)}{\sqrt{f(x)+1}}$

Use the definition of the limit to prove the following limit.

(5 points)

$$\lim_{x \to 16} \sqrt{x} - 1 = 3$$

<u>Q.11:</u>

<u>*Q.12***</u>:** Sketch one period of the the graph of:

 $y = -5\sin(4x - \Pi)$

i) Is f(x) continuous at x = 1? Why or why not?

<u> </u>	Use the graph of $y = x^2$	to sketch the graph of	$y = -2(x+1)^2 + 3$	(5 points)
----------	----------------------------	------------------------	---------------------	-------------