Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Business Calculus	MATH 211	MAJOR EXAM I
Semester:	Fall Semester Term 181	
Date:	Monday October 15, 2018	
Time Allowed:	90 minutes	

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

Page 1	Page 2	Page 3	Page 4	Total	Total
20	18	22	20	80	20

<u>O.1 (3 points)</u>: find the **domain** of the function $f(x) = \frac{3x-5}{x^2-5x-6}$

<u>O.2 (6 points)</u>: a) Find the equation of the line passing through (-3,2) and is parallel to the line whose equation is given by: 5x+3y-7=0

b) Find the point of intersection of the graphs of: y = -3x + 5 and y = 2x - 10

<u>O.3 (6 points)</u>: The supply and demand functions for a particular commodity are: S(q) = 17q + 80 . D(q) = 480 - 3q

a) Find the equilibrium level of production, q_e and the equilibrium price, p_e .

b) For what values of q is there a market surplus? A market shortage?

<u>O.4 (5 points)</u>: Find the value of the constant A that will make the function f continuous at x = 3 $f(x) = \begin{cases} -18 - 3x & \text{if } x < 3 \\ Ax^2 + 2x - 6 & \text{if } x \ge 3 \end{cases}$

<u>O.5 (6 points)</u>: Use the following graph to answer the questions:

Q.6 (9 points): Find the limits: Show your work

a)
$$\lim_{x \to 1^-} \frac{x - \sqrt{x}}{x - 1}$$

b)
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$$

c)
$$\lim_{x \to -\infty} \frac{-3x^3 - 2x - 4}{8 + 3x + 4x^3}$$

$$f(x) = \begin{cases} x^2 + x - 1 & -3 < x < -1 \\ x + 2 & -1 \le x < 1 \\ 3 - x^2 & 1 \le x < 2 \end{cases}$$
 Find the limits
$$\lim_{x \to 1^-} f(x) = \\ \lim_{x \to -1} f(x) = \\ \lim_{x \to -1} f(1) = \end{cases}$$

<u>O.8 (3 points)</u>: If the profit from the sales of x units of a product is: $P(x) = -0.1x^2 + 300x - 1200$. What **level of production** x will yield the **maximum profit**?

Q.9 (10 points): A manufacturer can sell a certain product for \$80 a piece. The manufacturer's total cost consists of a fixed overhead of \$120,000 and a production cost of \$50 per unit.

a) How many units must be sold for the manufacturer to break even?

b) How many units must the manufacturer sell if he wants to realize (have) a profit of \$15,000 ?

<u>O.10 (9 points):</u> Find the **derivative**:

a)
$$y = \frac{5}{x^7} - \frac{3}{x^3} + 8\sqrt{x}$$

b)
$$f(x) = \frac{5x^2 - 1}{\sqrt{3 + 2x}}$$

c)
$$f(x) = (2x^3 + 3x + 1)(x^2 + 4)^5$$

<u>0.11 (3+3+2 points)</u>: The profit from the sales of q units of a product is given by: $P(q) = 70q - q^2$. a) What is the **average rate** of change in profit as the level of production changes from q = 0 to q = 20?

- b) At what **rate** is the profit changing when q = 20?
- c) At what **percentage rate** is the profit changing when q = 20?

<u>O.12 (6 points)</u>: Find the equation of the tangent line to the graph of $y = 6x \cdot \sqrt{3x + 1}$ at x = 1

Q.13 (6 points): At a certain factory, the total cost of manufacturing q units during the daily production is $C(q) = 0.3q^2 + 0.8q + 800$ dollars. It has been determined that approximately $q(t) = t^2 + 80t$ units are manufactured during the first t hours of a production run. Find **the rate** at which the total manufacturing cost is changing **with respect to time** 3 hours after production begins.