Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Business Calculus	MATH 211 MAJOR EXAM II		
Semester:	Spring Semester Term 172		
Date:	Monday April 16, 2018		
Time Allowed:	90 minutes		

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	151
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

Page 1	Page 2	Page 3	Page 4	Total	Total
19	23	22	16	80	20

<u>Q.1 (5 points)</u>: Find the absolute maximum and absolute minimum of $f(x) = -2x^3 + 3x^2 + 12x - 5$ in [0,3]

<u>Q.2 (10 points)</u>: Consider the function $f(x) = -2x^4 + 4x^2 + 1$ a) Find the critical numbers of f

- b) Find the intervals on which f is increasing and decreasing, if any.
- c) Find any relative maximum and minimum, if any.
- d) Find the intervals on which f is concave up and concave down, if any.
- e) Sketch the graph of showing what you found in the previous parts.

<u>Q.3 (4 points)</u>: Use the **Second Derivative Test** to find the relative maximum and minimum, if any. $f(x) = x^4 - 6x^2$ **<u>Q.4 (6 points)</u>**: The cost of a commodity is $C(x) = 3x^2 + 5x + 75$ dollars when x thousand units are produced and the selling price is p(x) = 35 - 2x dollars per unit, find the level of production, x that **maximizes the profit.**

<u>Q.5 (6 points)</u>: If the total cost of manufacturing *q* units of a certain commodity is $C(q) = 4q^3 - 2q^2 + 300q$ a) Use **marginal analysis** to estimate the cost of producing the 18th unit, in dollars.

b) Find <u>the actual cost</u> of producing the 18^{th} unit.

<u>Q.6 (6 points)</u> Solve each equation for the variable. a) $4^{2x-x^2} = 1$

a)
$$4^{2x-x} = \frac{1}{64}$$

b) $\log_4(4x - 1) = 3$

Q.7 (5 points): How much should you invest now at an annual interest rate of 6.25% so that your balance 10 years from now will be \$20,000 if interest is compounded monthly?

<u>Q.8 (3+3+4+4 points)</u>: Find the derivative, y'. Simplify as much as possible. a) $y = \ln(e^{3x} + 3x^2)$

b)
$$y = (5x^4 - 3x^2 + 2x + 1)^{10}$$

$$x^3 + xy + y^3 = x$$

d)
$$y = \frac{e^{-2x}(2+x^3)^5}{\sqrt{1+x^2}}$$
 (Hint: use logarithmic Differentiation)

<u>Q.9 (8 points)</u>: Suppose that the demand equation for a certain commodity is $q = 3,000e^{-0.02p}$ where p is the price at which q units can be sold.

a) Find the **<u>elasticity of demand function.</u>**

b) Determine the price where the demand is <u>elastic, inelastic, or unit elasticity</u>.

<u>Q.10 (10 points)</u>: Find the following integrals:

a)
$$\int \left(\frac{2x-3}{x^4}\right) dx$$

b)
$$\int \frac{2x^3}{x^4 + 2} dx$$

c)
$$\int (e^{-2x} + \frac{5}{x})dx$$

Q.11 (6 points): The **marginal revenue** from producing *q* units of a certain commodity is $R'(q) = 4q - 1.2q^2$ dollars per unit. If the revenue from producing 20 units is \$30,000, **how much revenue** should be expected from producing 40 units?