

Prince Sultan University

Department of Mathematical Sciences Maior III Exam

Semester

Semester 1, 2009 FALL (091)	1 <i>/</i> .
16 th January, 2010	
MATH 113 – CALCULUS II	

Score

Time Allowed : 90 minutes **Maximum Points: 100 points**

Name of the stude	ent:		
ID number	:		
Section		221	

For All The Students:

- Answer all the questions.
- This exam consists of <u>5 questions and</u> a total of 7 pages.
- Show your working for each question with all the key steps.
- Only scientific, non-programmable calculators are allowed.

Questions	Maximum Score	Your Score
Q.1	60	
Q.2	4	
Q.3	10	
Q.4	4	
Q.5	22	
Total	100	

Q.1 (6 points each): Evaluate the following integrals:

a) $\int x \sec^2 x dx$

b) $\int \sec^5 \theta \tan \theta d\theta$

 $c) \int \frac{-3x-1}{x^3-x^2} dx$

$$d) \int \frac{1}{\left(9+x^2\right)^{\frac{3}{2}}} dx$$

e)
$$\int \frac{2x^2 - 3x}{(x^2 + 1)(3x + 2)} dx$$

$$f) \int \frac{\cos t}{9 + \sin^2 t} dt$$

g)
$$\int \sin^3 2x \, \cos^2 2x dx$$

$$h) \int \frac{2x-6}{\sqrt{1-x^2}} dx$$

i)
$$\int x^3 e^{4x} dx$$

$$j) \quad \int x^2 \sqrt{x^2 - 4} dx$$

Q.2 (4 points): Find
$$\frac{dy}{dx}$$
 for $y = x^4 \cosh 2x$

Q.3 (10 points): Evaluate the following integral **using two different methods.**

$$\int \frac{e^x dx}{\sqrt{1 - e^{2x}}}$$

Q.4 (4 points): Prove the identity $\sinh 2x = 2 \sinh x \cosh x$

Q.5 (22 points): Evaluate the given limits.

a) $\lim_{x \to \pi^{-}} c \operatorname{sc} 2x \sin 5x$

$$b) \lim_{x \to 0} \frac{\cos x - 1}{x^2}$$

$$c) \lim_{x\to\infty} \left(\sqrt{x^2+1}-x\right)$$

$$\mathrm{d)} \quad \lim_{x \to 0} \left(e^x + x \right)^{\frac{1}{x}}$$