Prince Sultan University

Deanship of Educational Services PYP Department / Mathematics

COURSE DETAILS:

ORIENTATION MATHEMATICS II		MATH 002	MAJOR EXAM II	A
Semester:	Fall Semester Term 19)1		
Date:	Monday November 25,	2019		
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	8	8	19	13	12	60	15

Q.1A (16 points) Choose the correct answer

- 1) The following system of linear equations $\begin{cases} x + y = 8 \\ -x y = 10 \end{cases}$ is:
 - A) Consistent with infinitely many solutions
 - B) Inconsistent with one solution
 - C) Inconsistent with no solution
 - D) Consistent with exactly one solutions
- 2) If $\cos^{-1}(\cos x) = x$, then x belongs to:
 - A) [-1,1]
 - B) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 - C) $[0,\pi]$
 - $\mathbf{D}) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- 3) **The solution set** of the following system $\begin{cases} x + y z = 1 \\ y + 2z = 3 \end{cases}$ is: z = 4
 - A) $\{(4,-5,10)\}$
 - B) $\{(10,-5,4)\}$
 - C) $\{(-6,11,4)\}$
 - D) $\{(-8, -5, 4)\}$
- 4) If A is a 2×4 matrix and B is a 4×3 matrix, what should matrix C be so that the operation $A \cdot B + 3C$ is **defined**?
 - A) C is 4×4
 - B) C is 2×3
 - C) C is 4×6
 - D) C is 3×2

Question	1	2	3	4
Answer				

- 5A) $\cos(70^{\circ})\cos(10^{\circ}) + \sin(70^{\circ})\sin(10^{\circ}) =$
 - A) $\cos(70^{\circ} 10^{\circ})$
 - B) $\cos(70^{\circ} + 10^{\circ})$
 - C) $\sin(70^{\circ} 10^{\circ})$
 - D) $\sin(70^{\circ} + 10^{\circ})$
- 6) Find $\sin^{-1}(-0.981)$ in radians rounded to two decimal places.
 - A) -78.81
 - B) -1.20
 - C) -1.38
 - D) 58.41
- 7) The solution set for $2\sin(x)-1=0$, $0 \le x < 2\pi$ is:
 - A) $\frac{\pi}{3}, \frac{\pi}{6}$
 - B) $\frac{\pi}{6}, \frac{7\pi}{6}$
 - C) $\frac{\pi}{6}, \frac{5\pi}{6}$
 - D) $\frac{\pi}{3}, \frac{2\pi}{3}$
- 8) If $A = \begin{bmatrix} 4 & 2 & -5 \\ 3 & 1 & -2 \\ 6 & -10 & 9 \end{bmatrix}$, then $a_{23} =$
 - A) -10
 - B) 2
 - C) 1
 - D) -2

Question	5	6	7	8
Answer				

Q.2A (5 points): Find the value of $\tan\left(\cos^{-1}(-\frac{4}{7})\right)$, without using a calculator. Show all your steps.

Q.3 (6 points): given that $\tan \alpha = -\frac{2}{5}$ where α is in Q2, and $\sec \beta = \frac{8}{3}$, where β is in Q4 Find $\sin(\alpha - \beta)$

Q.4 (8 points): Solve the following equations on the interval $\left[0,360^{\circ}\right]$

a)
$$\tan(3x) = \sqrt{3}$$

b)
$$4\sin^2(x) - 1 = 0$$

Q.5A (5 points): Given that
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 3 & -1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 6 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} -2 & 5 \\ 7 & 4 \end{bmatrix}$
Find $AB - 3C$

Q.6 (8 points): Graph the solution set of the following system of inequalities.
$$\begin{cases} y \le 4-x^2 \\ x-y \le 2 \\ y+2x \ge 0 \end{cases}$$

Q.7A (4 points): Solve the following system using substitution. $\begin{cases} 4x - 3y = 14 \\ x - 2y = 1 \end{cases}$

Q.8 (8 points): Solve the following system using Gaussian Elimination with back substitution OR

using Gauss – Jordan.
$$\begin{cases} x + 2y - z = 6 \\ 2x - y + 3z = -13 \\ 3x - 2y + 3z = -16 \end{cases}$$

Prince Sultan University

Deanship of Educational Services
PYP Department / Mathematics

COURSE DETAILS:

ORIENTATION MATHEMATICS II		MATH 002	MAJOR EXAM II	В
Semester:	Fall Semester Term 19	1		
Date:	Monday November 25, 2019			
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	8	8	13	12	19	60	15

Q.1B (16 points) Choose the correct answer

1) If
$$A = \begin{bmatrix} 4 & 2 & -5 \\ 3 & 1 & -2 \\ 6 & -10 & 9 \end{bmatrix}$$
, then $a_{23} =$

- A) 2
- B) -2
 - C) 1
 - D) -10

2) The solution set for $2\sin(x)-1=0$, $0 \le x < 2\pi$ is:

- A) $\frac{\pi}{6}, \frac{5\pi}{6}$
- B) $\frac{\pi}{6}, \frac{7\pi}{6}$
- C) $\frac{\pi}{3}, \frac{\pi}{6}$
- D) $\frac{\pi}{3}, \frac{2\pi}{3}$

3) $\cos(70^{\circ})\cos(10^{\circ}) + \sin(70^{\circ})\sin(10^{\circ}) =$

- A) $\cos(70^{\circ} 10^{\circ})$
- B) $\sin(70^{\circ} + 10^{\circ})$
- C) $\cos(70^{\circ} + 10^{\circ})$
- D) $\sin(70^{\circ} 10^{\circ})$

4) Find $\sin^{-1}(-0.981)$ in radians rounded to two decimal places.

- A) -1.38
- B) 58.41
- C) -1.20
- D) -78.81

Question	1	2	3	4
Answer				

- 5B) **The solution set** of the following system $\begin{cases} x + y z = 1 \\ y + 2z = 3 \end{cases}$ is: z = 4
 - A) $\{(-6,11,4)\}$
 - B) $\{(-8, -5, 4)\}$
 - C) $\{(10, -5, 4)\}$
 - D) $\{(4,-5,10)\}$
- 6) If A is a 2×4 matrix and B is a 4×3 matrix, what should matrix C be so that the operation $A \cdot B + 3C$ is **defined**?
 - A) C is 4×6
 - B) C is 4×4
 - C) C is 3×2
 - D) C is 2×3
- 7) The following system of linear equations $\begin{cases} x + y = 8 \\ -x y = 10 \end{cases}$ is:
 - A) Consistent with infinitely many solutions
 - B) Inconsistent with no solution
 - C) Consistent with exactly one solutions
 - D) Inconsistent with one solution
- 8) If $\cos^{-1}(\cos x) = x$, then x belongs to:
 - A) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
 - B) $[0,\pi]$
 - C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 - D) [-1,1]

Question	5	6	7	8
Answer				

Q.2B (5 points): Given that
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 3 & -1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 6 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} -2 & 5 \\ 7 & 4 \end{bmatrix}$

Find AB-3C

Q.3 (8 points): Graph the solution set of the following system of inequalities.
$$\begin{cases} y \le 4 - x^2 \\ x - y \le 2 \\ y + 2x \ge 0 \end{cases}$$

Q.4B (4 points): Solve the following system using substitution.

$$\begin{cases} 4x - 3y = 14 \\ x - 2y = 1 \end{cases}$$

Q.5 (8 points): Solve the following system using Gaussian Elimination with back substitution OR

using Gauss – Jordan.
$$\begin{cases} x + 2y - z = 6 \\ 2x - y + 3z = -13 \\ 3x - 2y + 3z = -16 \end{cases}$$

<u>O.6B (5 points)</u>: Find the value of $\tan\left(\cos^{-1}\left(-\frac{4}{7}\right)\right)$, <u>without using a calculator</u>. <u>Show all your steps.</u>

Q.7 (6 points): given that $\tan \alpha = -\frac{2}{5}$ where α is in Q2, and $\sec \beta = \frac{8}{3}$, where β is in Q4Find $\sin(\alpha - \beta)$

Q.8 (8 points): Solve the following equations on the interval $\left[0,360^{\circ}\right]$

a) $\tan(3x) = \sqrt{3}$

b) $4\sin^2(x) - 1 = 0$