

Prince Sultan University

Department of Mathematical Sciences Maior II Exam

Semester I, 2009 FALL (091) December 14, 2009

MATH 113 - CALCULUS II

Time Allowed: 90 minutes Maximum Points: 60 points

Name of the student:		
ID number	:	

Section : 221

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of</u> <u>6 pages and 8 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
Q.1	15	
Q.2 , Q.3	12	
Q.4 , Q.5	12	
Q.6	10	
Q.7 , Q8	11	
Total	60	

Q.1 (15 points): Evaluate the following integrals:

a)
$$\int_{0}^{1} \frac{dx}{\sqrt{e^{x}}}$$

b)
$$\int \frac{\cos(\ln x^4)}{x} dx$$

c)
$$\int_{1}^{e^{\frac{\pi}{4}}} \frac{\sec^2(\ln x)}{x} dx$$

$$d) \int x \, 2^{x^2} dx$$

$$e) \int_{0}^{1} \frac{e^{x} - 1}{e^{2x}} dx$$

Q.2 (6 points): Find the area of the region enclosed by the graphs of x + y = 2 and $x = y^2$.

Q.3 (6 points): Find the exact length of the arc of $y = 4x^{\frac{3}{2}} + 1$; $1 \le x \le 2$

Q.4 (6 points): Find the area of the surface generated when $y = \sqrt{4-x^2}$ from x = 0 to x = 1 is revolved about x - axis

Q.5 (6 points): Use <u>the washers method</u> to find the volume of the solid generated by revolving the region bounded by the graphs of $y = \sqrt{2-x}$ and y = -x and y = 0 about y - axis

<u>Q6 (10 points):</u>

Use the best method to find the volume of the solid generated when the region bounded by y=4-x, y=x, and y=4 is revolved about:

a) x-axis

b) y-axis

Q.7 (6 points): Use <u>the cylindrical shell method</u> to find the volume of the solid that results when the region enclosed by $x = y^2$, x = y is revolved about the line x = -1

Q.8 (5 points): Let V be the volume of solid that results when the region enclosed by $y = \frac{1}{x}$, y = 0, x = 2, and x = b (0 < b < 2) is revolved about the x - axis. **Find the value of** b for which V = 3