Prince Sultan University

Department of Mathematical Sciences

Major II Exam

Semester II, 2012 SPRING (112) 5th May 2012

MATH 111 – CALCULUS I

Time Allowed : 90 minutes Maximum Points: 80 points

:___

Name of the student: ______

ID number

Section : 221(Mr. Khaled) or 222(Dr. Hamdi)

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of</u>
 <u>6 pages and 7 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
1	20	
2 , 3 , 4	18	
5	20	
6	8	
7	14	
Total	80	

<u>Q.1 (20 points)</u>: Find the derivative. <u>Simplify</u> as much as possible.

(i)
$$y = \left(\frac{2x-1}{3-5x}\right)^{201}$$

(ii)
$$y = 2\sin^4(5x^3)$$

(iii)
$$y = \sin^{-1}(\sqrt{x+1})$$
, $x \in (-1,0)$

(iv)
$$y = e^{5x} \ln(2x^3 + 4x^2)$$

(v)
$$y = (\tan(2x))^x$$

<u>Q.2 (6 points)</u>: Determine $\frac{dy}{dx}$, if $\sqrt{x+4y} = x^2y^3+1$.

<u>Q.3 (6 points)</u>: Find $f^{(3)}(x)$ and evaluate $f^{(3)}(-1)$ where $f(x) = \left(\frac{1}{1-x}\right)^4$.

<u>Q.4 (6 points)</u>: Show that the equation $2x^3 - 6x^2 + 10x = 14$ has exactly one root.

<u>Q.5 (20 points):</u> Evaluate the limits, if it exists.

(i)
$$\lim_{x\to\infty} \frac{\sqrt{x-\ln(x)}}{\sqrt{x}}$$

(ii)
$$\lim_{x \to 0} \frac{1 - \cos(3x)}{(3x)^2}$$

(iii)
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$

(iv)
$$\lim_{x\to\infty} \left(\frac{x-3}{x+2}\right)^{2x}$$

Q.6 (8 points): Find the *x*-coordinate of the point (s) on the graph of $f(x) = \frac{5x^{\frac{1}{5}}}{2+x}$ where: (i) the tangent line is horizontal. (ii) the tangent line is vertical.

<u>Q.7 (14 points)</u>: For the function h given by: $h(x) = x^5 - 5x^2 + 1$

- (i) Find the intervals where the function is increasing and where it is decreasing.
- (ii) Use the 2^{nd} derivative test to characterize the local extreme points, if any.
- (iii) Find the intervals where the function is concave up and where it is concave down.
- (iv) Determine inflection point(s), if any.
- (v) Find the absolute extrema for f on the interval [-2,1].