Prince Sultan University

Department of Mathematical Sciences

Major I Exam

Semester II, 2012 SPRING (112)

17th MARCH 2012

MATH 111 – CALCULUS I

Time Allowed : 90 minutes Maximum Points: 100 points

Name of the student: ______

ID number

Section : 221(Mr. Khaled) or 222(Dr. Hamdi)

:____

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of</u>
 <u>7 pages and 12 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
1 , 2 , 3	17	
4,5	14	
6 , 7 , 8	20	
9 , 10	33	
11 , 12	16	
Total	100	

- a) $\lim_{x \to -1^+} f(x)$
- **b)** $\lim_{x \to -1^{-}} f(x)$
- **c)** $\lim_{x \to -1} f(x)$
- $d \lim_{x \to 2^+} f(x)$
- **e)** $\lim_{x \to 2^{-}} f(x)$
- f) $\lim_{x \to -\infty} f(x)$
- **g)** f(1)

Q.2 (4 points): Use the Intermediate Value Theorem to show that the equation $4x^3 - 6x^2 + 3x - 2 = 0$ has a solution between 1 and 2.

Q.3 (6 points): If
$$h(x) = \frac{1+f(x)}{g(x)}$$
, $g(2) = 1$, $g'(2) = 2$, $f'(2) = 5$, and $h'(2) = 14$. Find $f(2)$

<u>Q.4 (6 points)</u>: Find the derivative. (i) $f(x) = \frac{x^2 - 2}{x^2 + 5x}$

(ii)
$$f(x) = \left(\sqrt{x} + 3x\right) \left(5x^2 - \frac{3}{x}\right)$$

Q.5 (8 points): Find the values of *a* and *b* such that the function: $f(x) = \begin{cases} x^2 - a & \text{if } x < 1 \\ a + bx & \text{if } 1 \le x \le 2 \\ b - x^3 & \text{if } x > 2 \end{cases}$ is continuous everywhere **Q.6 (7 points):** Use the limit definition to find the derivative of $f(x) = 1 + \frac{1}{x}$ at x = 1

Q.7 (6 points): Find the horizontal asymptote(s) of the graph of the function $f(x) = \tan^{-1}\left(\frac{\sqrt{9x^2+2}}{3x+7}\right)$

Q.8 (7 points): Find the point(s) on the graph of $f(x) = \frac{x-2}{x^3}$ at which the tangent line to the graph of f is parallel to the x-axis.

Q.9 (28 points): Evaluate the limits, if it exists.

a)
$$\lim_{x \to -\infty} \frac{x+3}{\sqrt{9x^2-5x}}$$

b)
$$\lim_{x \to \infty} \left(\frac{4x}{x-1} \right) \left(\frac{x^2}{2+x^2} \right)$$

c)
$$\lim_{x \to 5} \frac{3x}{(x-5)^5}$$

d)
$$\lim_{x\to 2} \frac{x^4 - 16}{x^2 - x - 2}$$

e)
$$\lim_{x\to 0} \frac{4x^2 - 5\sin^2 2x}{x^2}$$

g)
$$\lim_{x \to 7} \frac{x - 7}{\sqrt{7x} - 7}$$

Q.10 (5 points): If $x^3 - x + 4 \le x + f(x) \le 3x^2 + 1$ for all real numbers x, then find $\lim_{x \to 1} f(x)$. Show your steps.

Q.11 (8 points): Consider the function $f(x) = |x^2 - 1|$. Discuss the differentiability of f. Determine the value(s) of x where f is not differentiable(if any)

Q.12 (8 points): Consider the function $f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ e^x & \text{if } 0 \le x \le 1 \\ e-\ln x & \text{if } x > 1 \end{cases}$

Discuss the continuity of f. Determine the value(s) of x where f is not continuous (if any)