

Prince Sultan University

Department of Mathematical Sciences Major I Exam

Semester II, SPRING 2010 (092) 22nd March, 2010

MATH 113 — CALCULUS II

Time Allowed : 90 minutes $\left(1\frac{1}{2} \text{ hours}\right)$

Maximum Points: 100 points Mr. Khaled Naseralla

Name of the student:						_
ID number	:			_		
Section	:	219				

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of 6 pages and 10</u> questions.
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem
- Scientific, non-programmable calculators are allowed.
- You may NOT borrow a calculator from anyone.
- You may NOT use notes or any textbook.
- There should be NO talking during the examination.
- If your mobile phone is seen or heard, your exam will be taken immediately.

Question	Maximum score	Your Score
1,2	41	
3,4,5,6	24	
7,8	17	
9,10	18	
Total	100	

1	5	

Q.1 (36 points): Evaluate the following integrals:

a)
$$\int \frac{(x+1)}{\sqrt[3]{x^2 + 2x + 2}} dx$$

$$b) \quad \int y\sqrt{9-y^2}dy$$

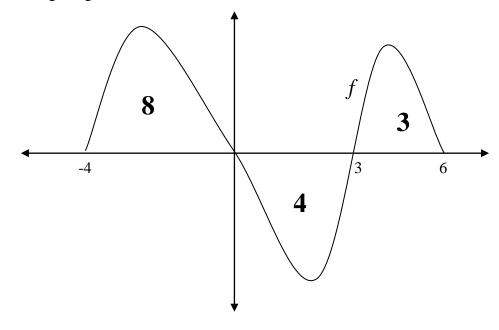
c)
$$\int_{0}^{4} |x|^{2} - 9 dx$$

d)
$$\int \frac{1+\cos^2\theta}{\cos^2\theta} d\theta$$

e)
$$\int_{0}^{1} \frac{x+2}{(\sqrt{x+1}} dx$$

$$f) \int_{1}^{\sqrt{2}} \left(\frac{u^5}{2} - \frac{1}{u^3} \right) du$$

Q.2 (5 points): In the following graph of the function f, the areas between f and the x-axis are as indicated Use this to find the following integrals:


a)
$$\int_{0}^{3} f(x) dx$$

$$b) \int_{0}^{-4} f(x) dx$$

$$d) \int_{-4}^{6} |f(x)| dx$$

$$e) \int_{3}^{6} (4-f(x)) dx$$

Q.3 (5 points): Find a function F such that F(3) = 5 and $F'(x) = 2 - x^2$

Q.4 (8 points): Evaluate:

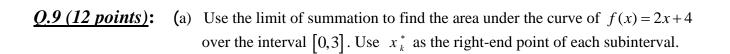
a)
$$\sum_{i=1}^{40} (i-3)^2$$

b)
$$\sum_{k=15}^{60} (4k+1)$$

Q. 5(6 points): Given
$$\int_{0}^{2} f(x) dx = 4$$
 and $\int_{1}^{2} f(x) dx = 7$, $\int_{1}^{3} f(x) dx = 16$

a) Find
$$\int_{0}^{1} f(x) dx$$

b) Find
$$\int_{0}^{3} f(x) dx$$


Q.6 (5 points): An object fired vertically downward from the top of a building that is 200*m* high. The object reached the ground after 3 seconds. What is its initial velocity?

Q.7 (7 points) :	Find the total area of the region between the x -axis and the graph of $y = x^2 - 3x$ over the
	interval $\begin{bmatrix} -1,1 \end{bmatrix}$.

Q.8 (10 points): Suppose the acceleration of an object is given by the function a(t) = -2t + 4 m/s^2 v(0) = 5 and s(0) = 4

a) Find the position function of the particle.

- b) Find the velocity of the object at t = 5
- c) Find the total distance traveled between t = 0 and t = 8

- (b) Verify your answer in part (a) using geometry.
- (c) Find the value(s) of x^* that satisfies the Mean-Value Theorem for f(x) = 2x + 4 in the interval [0,3]

Q.10 (6 points): Given the initial value problem $\frac{dy}{dx} = kx$, with conditions y(0) = 10 and y(2) = 18. Find the value of the constant k.