

Prince Sultan University

Department of Mathematical Sciences Major I Exam

Semester I, FALL 2009 (091) 2nd November, 2009

MATH 113 - CALCULUS II

Time Allowed: 90 minutes Maximum Points: 100 points

Mr. Khaled Naseralla

Name of the student :					
ID number	:				
Section		221			

For All The Students:

- Answer all the questions.
- This exam consists of <u>a total of</u> <u>6 pages and 11 questions.</u>
- Show your working in the space provided for each question.
- Show all the key steps of your work.
- Scientific, non-programmable calculators are allowed.

Question	Maximum score	Your Score
1,2	42	
3,4,5,6	24	
7,8	13	
9,10,11	21	
Total	100	

15

<u>Q.1 (36 points)</u>: Evaluate the following integrals. (Show your work)

a)
$$\int_{-5}^{5} f(x)dx$$
 if $f(x) = \begin{cases} x^3 & \text{if } x > 1\\ 5 - x^2 & \text{if } x \le 1 \end{cases}$

b)
$$\int x^2 (x^3 + 9)^8 dx$$

c)
$$\int \cos^4(3t)\sin(3t)dt$$

d)
$$\int_{1}^{3} x^{3} (2x + \frac{1}{x^{4}}) dx$$

e)
$$\int \frac{3x+6}{2x^2+8x+3} dx$$

f)
$$\int \frac{\cos 3x}{\sqrt{5 + 2\sin 3x}} dx$$

Q.2 (6 points): Suppose that F(x) is a continuous function and suppose that F(-1) = 3, F(3) = 5, F'(-1) = 2 and F'(3) = -2. Find the following:

a)
$$\int_{-1}^{3} F'(x) dx$$

b)
$$\int_{-1}^{3} F''(x) dx$$

c)
$$\int_{-1}^{3} [F(x)]^2 . F'(x) dx$$

Q.3 (6 points): Let $F(x) = \int_{4}^{x} (10t^2 + \sqrt{t}) dt$ Find

- a) F(4)
- b) F'(4)
- c) F''(4)

Q.4 (4 points): Given $\int_{6}^{8} f(x) dx = 3$, $\int_{8}^{20} f(x) dx = 7$ and $\int_{6}^{20} g(x) dx = 8$ Find $\int_{6}^{20} [6f(x) + g(x)] dx$

Q.5 (6 points): Evaluate $\sum_{k=1}^{12} k (3k + 2)$

Q.6 (8 points): Use the limit of the **Riemann Sum** to find the area under the curve f(x) = 5 - 2x over the interval [0,1], using x_k^* as the right endpoint of each subinterval.

Q.7 (8 points): The velocity of an object moving along an S - axis is given by: $v(t) = (2t^3 - 2t) m/s$

i) Find the total distance the object travels over the period $0 \le t \le 4$

ii) Find the position of the object at t = 3 seconds given that S(0) = -3

iii) Find the acceleration of the object at t = 2 seconds

Q.8 (5 points): A ball is fired vertically upward from ground level with an initial velocity 64 ft / s Determine the maximum height the ball reaches.

$$S = S_o + V_o t - \frac{1}{2} g t^2$$

$$V = V_o - g t$$

$$g = -32 f t / s^2 \text{ or}$$

$$g = -9.8 m / s^2$$

Q.9 (7 points): Find the value(s) of x^* that satisfies the Mean-Value Theorem for the function f(x) = 3x + 1 on the interval [0,6]

O.10 (6 points): Solve the initial value problem:

$$\frac{dy}{dx} = \cos x - 5x \quad , \quad y(0) = 4$$

Q.11 (8 points): Use the definite integral to find the area between f(x) = |x - 1| + 2 and the x - axis over the interval [0,5]. Sketch the graph of f(x) to verify the area using geometric formula.