MATH 221 - Dr. Muhammad Islam Mustafa

Major Exam 2

Student Name:	Time allowed: 60 minutes
---------------	--------------------------

• Using the following data

х	0	0.2	0.4	0.6
f(x)	0	0.20271	0.422793	0.684137

solve the questions 1-3.

Q1. Use appropriate Lagrange interpolating polynomial of degree two to approximate f(0.5). **Solution:**

Q2. Use the Newton forward or backward divided difference method, as suitable, to construct interpolating polynomial of degree three for the above data and approximate f(0.5) using this polynomial **Solution:**

х	f(x)	1 st divided difference	2 nd divided difference	3 rd divided difference
0	0			
0.2	0.20271			
0.4	0.422793			
0.6	0.684137			

Q3. Use the most accurate three-point formula to approximate f'(0.2).

Solution:

Q4. Approximate the integral $\int_{0}^{0.5} e^{x^2} dx$ using the Trapezoidal rule.

Solution:

Q5. Determine the values of *n* and *h* required to approximate the integral $\int_{0}^{1.5} \ln x dx$ to within 10^{-5} using the

Composite Simpson's rule. Compute the approximation and find the actual error.

Solution:

A list of formulas

The three-point formulas

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3} f'''(\xi)$$
$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f'''(\xi)$$

The Midpoint rule

$$\int_{a}^{b} f(x)dx = 2hf(x_0) + \frac{h^3}{3}f''(\xi)$$

Trapezoidal rule

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [f(a) + f(b)] - \frac{h^{3}}{12} f''(\xi)$$

Simpson's rule

$$\int_{a}^{b} f(x)dx = \frac{h}{3}[f(a) + 4f(x_0) + f(b)] - \frac{h^5}{90}f^{(4)}(\xi)$$

Composite Trapezoidal rule

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b)] - \frac{b-a}{12} h^2 f''(\xi)$$

Composite Simpson's rule

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [f(a) + 2\sum_{i=1}^{\frac{n}{2}-1} f(x_{2i}) + 4\sum_{i=1}^{\frac{n}{2}} f(x_{2i-1}) + f(b)] - \frac{b-a}{180} h^{4} f^{(4)}(\xi)$$