PRINCE SULTAN UNIVERSITY

MATH 111

Calculus

MAJOR EXAM II

 Start:
 4:00 pm

 End:
 5:30 pm

Name

<u>I.D.</u>

<u>Section:</u> (8 AM) (9 A.M) (10 AM) (12 PM)

- 1. Answer all questions
- 2. This exam consists of 4 pages, 9 questions
- 3. You can use a calculator, NOT a mobile phone.
- 4. No talking during the test.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1,2,3	18	
4,5,6	20	
7,8	12	
TOTAL	50	

Q1. (9 points) Find the limits a. $\lim_{x\to 0} \frac{\sin(5x)}{2x^2-7x}$

b.
$$\lim_{x \to \infty} \frac{(2x^2+1)^2}{(x+2)^2(x^2-2x)}$$

c.
$$\lim_{x\to\infty}\frac{2e^x-3e^{-x}}{e^x+2e^{-x}}$$

Q2. (4 points) Use the definition to find the derivative of the function $f(x) = \sqrt{x} - 3$

Q3. (5 points) If $xy + e^y = e$, find the value of y'' at the point where x = 0.

Q4. (12 points) Find the derivative of the functions (Simplify your answers if possible) a. $y = \sec^2(2x)$

b. $y = e^{x \sin(2x)}$

c.
$$y = \sqrt{1 + 2e^{2x}}$$

d.
$$y = x \sin^{-1}(x) + \sqrt{1 - x^2}$$

Q5. (5 points) Find equations of the tangent line and the normal line to the curve $x^2 + xy + y^2 = 4$ at the point where x = 0.

Q6. (3 points) If
$$g(x) + x \sin(g(x)) = x^2$$
 and $g(0) = \frac{\pi}{2}$, find $g'(0)$.

Q7. (3 points) If $y = (1 + x)e^{2x}$, show that y'' - 4y' + 4y = 0

- Q8. (5 points) A mass on a spring vibrates horizontally on a smooth level surface. The equation of motion is $x(t) = 8\sin(t)$, where t is in seconds and x is in centimeters at time t.
- a. Find the velocity and acceleration at time *t*.

- b. Find the position velocity, and acceleration of mass at time t = 2 seconds.
- Q9. (4 points) Find the vertical and horizontal asymptotes (if any) of the curve $y = \frac{2e^x}{e^x - 5}$