Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

ORIENTATION N	MATHEMATICS II	MATH 002	MAJOR EXAM II A
Semester:	Spring Semester Term 17	72	
Date:	Wednesday April 11, 2018	3	
Time Allowed:	90 minutes		

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Total	Total
Questions								
Marks	10	10	21	16	15	8	80	20

<u>Q.1 (20 points)</u> Choose the correct answer

- 1) Find all the solutions of $\cos x(\cos x + 1) = 0$ on $[0, 2\pi)$
 - A) π

(x)
$$\pi$$
 and

B) π and $\frac{\pi}{2}$ C) 0 and π

$$(2)$$
 0 and π

- D) π , $\frac{\pi}{2}$ and $\frac{3\pi}{2}$
- 2) The following system of two linear equations:

$$8x - 9y = 10$$

-24x + 27y = 13 is:

- A) Consistent with infinitely many solutions
- B) Inconsistent with one solution
- C) Consistent with exactly one solution
- D) Inconsistent with no solution
- 3) If $\sin^{-1}(\sin(x)) = x$, then x belongs to:

A)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

B) $\left[-1, 1\right]$
C) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
D) $\left[0, \pi\right]$

- 4) $\sec^{-1}(-\sqrt{51})$ rounded to two decimal places is:
 - A) 1.71
 - B) -1.71
 - C) 1.53
 - D) not defined.

5) Determine the period of the following function. $y = 3\sin\left(\frac{x}{4} - \frac{\pi}{2}\right)$

- A) $\frac{\pi}{8}$
- B) 8π
- C) 2π
- D) 3

Question	1	2	3	4	5
Answer					

You must write the correct answer to each question in the box below

6)
$$\cos^{-1}\left(\cos(\frac{7\pi}{6})\right) =$$

A) $\frac{\pi}{6}$
B) $\frac{5\pi}{6}$
C) $\frac{7\pi}{6}$
D) $\frac{11\pi}{6}$

7) $\cos(\pi - \theta) =$

- A) $\sin\theta$
- B) $\cos\theta$
- C) $-\sin\theta$
- D) $-\cos\theta$

8) The graph of $y = 5\sin \pi x$ in the interval [0,4] has the following *x*-intercepts:

- A) $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ B) 0,1,2 C) 0,1,2,3,4
- D) 0,2,4

9) Find the **range** for the function: $y = -2\sin(2x - \pi) + 3$

- A) [-2,2]
- B) [1,5]
- C) [-2,3]
- D) [-3,3]
- 10) Which of the following is an identity?
 - A) $\csc x = \sin x \cos x$
 - B) $\csc x = \cos x \cot x$

(C)
$$\frac{1}{\csc x} = \cos x \cot x$$

(D)
$$\frac{1}{\csc x} = \cos x \tan x$$

You must write the correct answe	r to each question in the box b	below
----------------------------------	---------------------------------	-------

Question	6	7	8	9	10
Answer					

<u>Q.2 (5 points)</u>: Write $\sin\left[\tan^{-1}\left(\frac{x}{9}\right)\right]$ as an algebraic expression. Assume that *x* is positive and in the domain of the given function.

<u>Q.3 (8 points)</u>: Given $\cot \alpha = -\frac{3}{2}$, α is in Quadrant *II* and $\sec \beta = 5$, β is in quadrant *IV*. Find $\cos(\alpha - \beta)$

<u>**Q.4 (8 points)</u></u>: Determine the amplitude, period, and phase shift** of $y = -3\cos\left(\frac{\pi}{2}x + 2\pi\right)$ then graph the function for <u>one period</u>.</u>

<u>Q.5 (8 points)</u> : Verify the identity. <u>Show all your steps</u>

a)
$$(\sec x - \tan x)^2 = \frac{1 - \sin x}{1 + \sin x}$$

b)
$$\frac{\csc\theta - \cot\theta}{\sec\theta - 1} = \cot\theta$$

<u>Q.6 (8 points)</u>: Solve the following equations on the interval $[0, 2\pi)$.

a) $\cos x \cdot \csc x = 2\cos x$

b) $4\cos^2(2x) - 1 = 0$

Q.7 (6 points):Solve the following system of linear equations using Addition/Elimination Method.(Write the solution Set, if any)SHOW ALL YOUR STEPS

2x+3y-z=1x + 2y = 3x+3y+z = 4

Q.8 (9 points) :	Graph the solution set of the system:
$x + y \leq 3$	
x - y > -3	
$x^2 + y^2 < 9$)

<u>Q.9 (8 points)</u>: Use Gaussian Elimination with back substitution or Gauss-Jordan to solve the following system of linear equations and write the solution set, if any. x+3y+5z = 20

x+3y+5z = 202x+3y+4z = 16x+2y+3z = 12