## PRINCE SULTAN UNIVERSITY

## MATH 111 CALCULUS

## MAJOR EXAM 3 6<sup>th</sup> JUNE 2009

Start:4:00 p.m.End:5:30 p.m.

Name:

I.D.

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 4 Question Sheets with 11 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. Show all working out in the space provided.

| Question No. | Max. Points | Points Scored |
|--------------|-------------|---------------|
| 1,2,3        | 18          |               |
| 4,5,6        | 18          |               |
| 7,8,9        | 26          |               |
| 10,11        | 18          |               |
| TOTAL        | 80          |               |
|              |             | %             |

1) [6 points] Given  $x^2y + 3xy^3 - x = 3$ , show using implicit differentiation that  $\frac{dy}{dx} = \frac{1 - 2xy - 3y^3}{x^2 + 9xy^2}.$ 

2) [6 points] Given that 
$$y = \frac{\sqrt[3]{x^2 + 3} \sqrt{x^3 - 1}}{4x^2 - x}$$
, find  $\frac{dy}{dx}$ .

3) [6 points] Given that, find 
$$\frac{dy}{dx}$$
 for the following:  
a)  $y = e^{x \tan x}$ 

b) 
$$y = e^{(x-e^{3x})}$$

4) [6 points] Given that  $y = (x^2 - 3x)^{\ln x}$ , use logarithmic differentiation to find  $\frac{dy}{dx}$ .

5) [6 points] A piece of spherical coal is burning such that its radius **decreases** at a constant rate of 15mm/min. At what rate is the volume reducing when the radius is 9 mm? *Hint: The volume of a sphere is given by*  $V = \frac{4}{3}\pi r^3$ .



6) [6 points] A 13-ft ladder is leaning against a wall. If the top of the ladder slips down the wall at a rate of 2 ft/s, how fast will the bottom of the ladder be moving away from the wall when the top is 5 ft above the ground?



7) [6 points] Sketch a continuous curve that has <u>all</u> the following properties:

f(-3) = 12 f(0) = 5 f(3) = 0 f'(x) > 0 for x > 3 and x < -3 f'(-3) = f'(3) = 0 f''(x) < 0 for x < 0f''(x) > 0 for x > 0

- 8) [10 points] Use the given graph of f(x) to find:
  - a) The increasing intervals
  - b) The decreasing intervals
  - c) The critical numbers
  - d) The relative maxima and minima

- e) How many inflection points are there?
- 9) [10 points] Sketch the graph of the function  $f(x) = x^3 3x^2 + 1$ . Label the x and y intercepts, critical points, and inflection points.

10) [6 points] Find 
$$\frac{dy}{dx}$$
  
a)  $y = x^2 (\sin^{-1} x)^3$ 

b) 
$$y = \cot^{-1} \sqrt{1 - x^2}$$

11) [12 points] Given that  $f(x) = x^4 - 18x^2 + 18$ 

- a) Find the intervals on which f is increasing.
- b) Find the intervals on which f is decreasing.
- c) Find all the *x*-coordinates of the critical points.
- d) Find all relative maxima and all relative minima.
- e) Find all inflection points.
- f) Find the open intervals on which f is concave up
- g) Find the open intervals on which f is concave down.