MATH 111 Major Exam 2

PRINCE SULTAN UNIVERSITY

MATH 111 CALCULUS

MAJOR EXAM 2 23rd DECEMBER 2008

Time allowed: 50 minutes	
Name:	
I.D.	
Instructors Name:	Section:

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 2 Question Sheets with 9 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the test.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1	6	
2	6	
3	12	
4	6	
5	8	
6-9	12	
TOTAL SCORE	50	

1) [6 points] Let $f(x) = x^2 + 1$. Use the definition of the derivative to find f'(x).

2) [6 points] Find the equation of the tangent line to the graph of $y = x^3 - 2\sqrt{x}$ at x = 1.

- 3) [12 points] Find $\frac{dy}{dx}$ (a) $y = 3x^2 - \frac{1}{x} + 2x + 5$
 - (b) $y = x \cot x 2 \csc x$

 $(c) y = \frac{5 - \cos x}{5 + \sin x}$

4) [6 points] Show that $y = \sec x$ satisfies $y'' - (\tan x)y' - y^3 = 0$.

- 5) [8 points] Given that f(4) = 1, f'(4) = -1, $g(x) = 3x^2 5f(x)$, and $h(x) = \frac{1 + xf(x)}{2x 7}$. Find (a) g'(4)
 - (b) h'(4)

- From Q6 to Q9 (3 points each) put a circle around the correct answer
- **6)** If $f(t) = t^2 + 3t + 5$ is the position function of an object at time t, where f(t) is in feet and t in seconds, then the average velocity of the object over the interval [1,3] is

- (a) $-\frac{2}{3}$ ft/sec (b) 5 ft/sec (c) 6 ft/sec (d) 7 ft/sec (e) $\frac{23}{2}$ ft/sec
- 7) $\lim_{x\to 0} \frac{\sin^2 2x}{x \tan x} =$
 - (a) 4

- (b) 1 (c) 2 (d) $\frac{1}{4}$ (e) does not exist
- **8)** $\lim_{x\to 0} \frac{1-\cos(9x)}{x^2} =$

 - a) $\frac{9}{2}$ (b) $\frac{81}{2}$ (c) 81 (d) 0
- (e) 1
- **9)** The graph of $y = \frac{x^2 1}{x^2 + 1}$ has a horizontal tangent line at the point
 - (a)(0,0)
- (b)(0,1)
- (c)(-1,0)
- (d)(1,0)
- (e)(0,-1)