Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

ORIENTATION N	IATHEMATICS II	MATH 002	MAJOR EXAM II	A
Semester:	Spring Semester Term 18	32		
Date:	Sunday March 31, 2019			
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	10	10	19	21	20	80	20

<u>Q.1A (20 points)</u> Choose the correct answer

- 1. If A is a 4×4 matrix, B is a 3×4 matrix, and C is a 4×3 matrix. Which of the following operations is **defined**?
 - A) BC A
 - B) BA + C
 - C) CB + A
 - D) AC + B
- 2. If $\sin(\sin^{-1}(x)) = x$, then x belongs to:
 - A) $\begin{bmatrix} 0, \pi \end{bmatrix}$ B) $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ C) $\begin{bmatrix} -1, 1 \end{bmatrix}$
 - D) R
- 3. $\cos 60^{\circ} \cos 15^{\circ} \sin 60^{\circ} \sin 15^{\circ} =$
 - A) $\cos 45^{\circ}$
 - B) $\cos 75^{\circ}$
 - C) $\sin 75^{\circ}$
 - D) $\sin 45^{\circ}$

4. Given that (8,5) is a solution of the system: $\begin{cases} ax - 4y = 20 \\ 2x + by = 1 \end{cases}$. Find the values of *a* and *b*. A) a = 4, b = -5

- B) a = -3, b = 5
- C) a = 2, b = -4
- D) a = 5, b = -3

5. Find the value of *b* that makes the system: $\begin{cases} 4x + 3y = 0 \\ -4x + by = 2 \end{cases}$ **inconsistent**.

- A) b = -3
- B) b = 0
- C) b = 7
- D) b = 3

You must write the correct answer to each question in the box below

Question	1	2	3	4	5
Answer					

6A. Which of the following is an invalid (wrong) elementary row operation?

A)
$$Row 2 \leftrightarrow Row 3$$

B) $4Row 3 \rightarrow Row 3$
C) $4Row 1 + Row 3 \rightarrow Row 3$
D) $(Row3) + 4 \rightarrow Row3$
7. Given $A = \begin{bmatrix} -3 & 9 & 1 \\ -2 & 3 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix}$. Find *A.B*, if possible.
A) $\begin{bmatrix} -16 \\ -6 \end{bmatrix}$
B) $\begin{bmatrix} -16 & -6 \end{bmatrix}$
C) *A.B* is not defined
D) $\begin{bmatrix} -3 & 9 & 1 \\ -2 & 3 & 1 \\ 4 & -1 & 5 \end{bmatrix}$
8. $\cos\left(x - \frac{\pi}{2}\right) =$
A) $\cos x$
B) $\sin x$
C) $-\cos x$
D) $-\sin x$
9. $\sin^2 x + \tan^2 x + \cos^2 x =$
A) $\cos^3 x$
B) $\tan^2 x$
C) $\sec^2 x$
D) $\sin x$
10. Which matrix describes the augmented form the system

10. Which matrix describes the augmented form the system? $\begin{cases} 3x = 4y - 5\\ 2x + 4y - 4 = 0 \end{cases}$

A)
$$\begin{bmatrix} 3 & 4 & -5 \\ 2 & 4 & 4 \end{bmatrix}$$
 B) $\begin{bmatrix} 3 & -4 & 5 \\ 2 & 4 & 4 \end{bmatrix}$

C)
$$\begin{bmatrix} 3 & -4 & -5 \\ 2 & 4 & 4 \end{bmatrix}$$
 D) $\begin{bmatrix} 3 & 4 & 5 \\ 2 & 4 & -4 \end{bmatrix}$

You must write the correct answer to each question in the box below

Question	6	7	8	9	10
Answer					

Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

ORIENTATION N	IATHEMATICS II	MATH 002	MAJOR EXAM II	B
Semester:	Spring Semester Term 182	2		
Date:	Sunday March 31, 2019			
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	10	10	19	21	20	80	20

Q.1B (20 points) Choose the correct answer

1. Which matrix describes the augmented form the system? $\begin{cases} 3x = 4y - 5\\ 2x + 4y - 4 = 0 \end{cases}$

A)
$$\begin{bmatrix} 3 & 4 & 5 \\ 2 & 4 & -4 \end{bmatrix}$$
 B) $\begin{bmatrix} 3 & -4 & -5 \\ 2 & 4 & 4 \end{bmatrix}$

C)
$$\begin{bmatrix} 3 & -4 & 5 \\ 2 & 4 & 4 \end{bmatrix}$$
 D) $\begin{bmatrix} 3 & 4 & -5 \\ 2 & 4 & 4 \end{bmatrix}$

2. Which of the following is an invalid (wrong) elementary row operation?

- E) $(Row3) + 4 \rightarrow Row3$
- F) $4Row 1 + Row 3 \rightarrow Row 3$
- G) $4Row 3 \rightarrow Row 3$
- H) $Row 2 \leftrightarrow Row 3$

3. $\cos\left(x-\frac{\pi}{2}\right) =$ E) $-\sin x$

- F) $\cos x$
- G) $\sin x$
- H) $-\cos x$
- 4. If A is a 4×4 matrix, B is a 3×4 matrix, and C is a 4×3 matrix. Which of the following operations is **defined**?
 - A) BA + C
 - B) AC + B
 - C) BC A
 - D) CB + A

5. $\sin^2 x + \tan^2 x + \cos^2 x =$

- A) $\cos^3 x$
- B) $\sec^2 x$
- C) $\tan^2 x$
- D) $\sin x$

Question	1	2	3	4	5
Answer					

You must write the correct answer to each question in the box below

6B. $\cos 60^{\circ} \cos 15^{\circ} - \sin 60^{\circ} \sin 15^{\circ} =$

- A) $\sin 75^{\circ}$
- B) $\sin 45^{\circ}$
- C) $\cos 75^{\circ}$
- D) $\cos 45^{\circ}$

7. Given that (8,5) is a solution of the system: $\begin{cases} ax - 4y = 20 \\ 2x + by = 1 \end{cases}$. Find the values of *a* and *b*. A) a = 5, b = -3

- B) a=4, b=-5C) a=-3, b=5D) a=2, b=-4
- 8. If $\sin(\sin^{-1}(x)) = x$, then $x \in :$
 - A) $\begin{bmatrix} -1,1 \end{bmatrix}$ B) $\begin{bmatrix} 0,\pi \end{bmatrix}$ C) $\begin{bmatrix} -\frac{\pi}{2},\frac{\pi}{2} \end{bmatrix}$ D) \mathbb{R}

9. Find the value of *b* that makes the system: $\begin{cases} 4x + 3y = 0 \\ -4x + by = 2 \end{cases}$ **inconsistent**.

A) b = 0B) b = -3C) b = 7D) b = 3

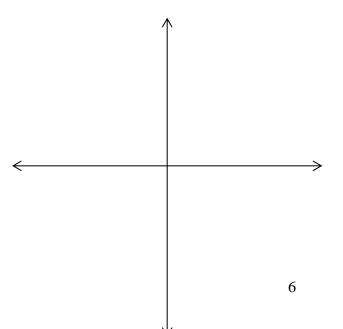
10. Given $A = \begin{bmatrix} -3 & 9 & 1 \\ -2 & 3 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 4 \\ -1 \\ 5 \end{bmatrix}$. Find *A.B*, if possible. E) $\begin{bmatrix} -16 & -6 \end{bmatrix}$ F) $\begin{bmatrix} -16 \\ -6 \end{bmatrix}$ G) $\begin{bmatrix} -3 & 9 & 1 \\ -2 & 3 & 1 \\ 4 & -1 & 5 \end{bmatrix}$

H) A.B is not defined

You must write the correct	answer to each	h question in t	he box below
----------------------------	----------------	-----------------	--------------

Question	6	7	8	9	10
Answer					

<u>Q.2 (6 points)</u>: Prove the identity.


a) $\frac{\sec x + \csc x}{\tan x + \cot x} = \sin x + \cos x$

b)
$$\frac{\cos x}{1-\sin x} = \sec x + \tan x$$

<u>Q.3 (6 points)</u>: find the exact value of $\sin(\theta - \phi)$, given that $\tan \theta = \frac{4}{3}$, θ is in quadrant III, and $\sin \phi = -\frac{2}{5}$, ϕ is in quadrant IV.

<u>Q.4 (7 points)</u>: Graph the solution set of the following system of inequalities. <u>Show all your work</u>.

$\int y < x^2 + 2$
$\int x + y > 1$
$\int x \ge 0$
$y \ge 0$

<u>Q.5 (8 points)</u>: Find the solutions of the trigonometric equations. a) $3\cos(x) + \sqrt{2} = \cos(x)$; All solutions (in degrees)

b) $2\sin^2(x) - \cos(x) = 1$; in the interval $[0, 2\pi)$

<u>**Q.6 (5 points):**</u> Use an Addition or Subtraction Formula to find the exact value. <u>Show all your work</u> a) $\sin(165^{\circ})$

b)
$$\cos\left(\frac{5\pi}{12}\right)$$

Q.7 (3+3+2 points): Let
$$A = \begin{bmatrix} 2 & 5 \\ -1 & 3 \\ 2 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 1 \\ -2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$

Perform the indicated operation, if possible. a) 4B + 3C

b) *A.C.*

Q.8 (7 points): Use **Elimination (Addition) Method** to solve the following system.

 $\begin{cases} 2x + y + z = 7\\ x + y - z = 4\\ -x - 2y + 3z = -2 \end{cases}$

	$\int x + y - z = 0$
<u>Q.9 (8 points)</u> : Solve the following system using <u>Gaussian Elimination</u> :	x + 2y - 3z = -3
(With back substitution <u>OR</u> Gauss –Jordan)	2x+3y-4z=-3

Q.10 (5 points): Solve for x and y.
$$\begin{bmatrix} 3x & 5 \\ -1 & 4x \end{bmatrix} + \begin{bmatrix} 2y & -3 \\ -6 & -y \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ -7 & 2 \end{bmatrix}$$
. Show all your work