

Name:

I.D.: Instructor:

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 4 Question Sheets with 18 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the test.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1,2,3,4,5,6	28	
7,8,9,10,11	26	
12,13,14,15	22	
16,17,18	24	
TOTAL	100	

1) [4 points] Given that f(-2) = 3 and f'(-2) = -4, find an equation for the tangent line to the graph of y = f(x) at x = -2.

2) [4 points] Find
$$\frac{dx}{dt}$$
, given that $x = \frac{t^2 + 1}{3t}$

3) [6 points] Show that if $x \neq 0$ then $y = \frac{1}{x}$ satisfies the equation $x^3y'' + x^2y' - xy = 0$.

4) [6 points] Given that $y = \frac{x^2 + 1}{x - 1}$, find all the values of x at which the tangent line to this curve is horizontal.

- 5) [4 points] Given that f(3) = 10, f'(3) = -1, g(3) = -3 and g'(3) = 2, find F'(3) where F(x) = 2f(x)g(x).
- 6) [4 points] Given that $f(x) = \sec x \tan x$, find f'(x).

7) [6 points] Given that $y = x \cos x$, find $\frac{d^2 y}{dx^2} \bigg|_{x=\frac{\pi}{4}}$.

8) [4 points] Find
$$\frac{dy}{dx}$$
, given that $y = 2\cos^3(3x^5)$.

9) [6 points] Find an equation for the tangent line to the graph of $y = x^2 \sqrt{5 - x^2}$ at x = 1.

10) [6 points] Given that
$$y = \left(\frac{x-5}{2x+1}\right)^3$$
, show that $\frac{dy}{dx} = \frac{33(x-5)^2}{(2x+1)^4}$.

11) [4 points] Given that
$$y = \left[1 + \sin^3\left(x^5\right)\right]^{12}$$
, find $\frac{dy}{dx}$.

12) [6 points] Find
$$\frac{d^2y}{dx^2}$$
, given that $x^3y^3 - 4 = 0$.

13) [6 points] Find the slope of the tangent line to the curve $y^3 + yx^2 + x^2 - 3y^2 = 0$ at the point (0,3).

14) [6 points] Find
$$\frac{dy}{dx}$$
 for the following functions:
a) $y = \log_2(x^3 + 3x^2)$

b)
$$y = x^3 \ln x$$

15) [4 points] Given
$$y = \log(\sin^2 x)$$
, show that $\frac{dy}{dx} = \frac{2 \cot x}{\ln 10}$.

16) [6 points] Find
$$\frac{dy}{dx}$$
, given that $y = \frac{(x^2 - 8)^3 \sqrt{x^3 + 1}}{x^6 - 7x}$.

17) [12 points] Find
$$\frac{dy}{dx}$$
 for the following functions:
a) $y = e^{-2x^2}$

b)
$$y = \pi^{x \tan x}$$

c)
$$y = \tan^{-1}(3x^3)$$

$$d) \quad y = x^2 \left[\sin^{-1} x \right]^3$$

18) [6 points] A stone dropped into a still pond sends out a circular ripple whose radius increases at a constant rate of 2 ft/s. How rapidly is the area enclosed by the ripple increasing at the end of 5 seconds?