PRINCE SULTAN UNIVERSITY

MATH 111 CALCULUS

MAJOR EXAM 2 <u>26TH APRIL, 2008</u>

Start:4:00 p.m.End:5:30 p.m.

Name:

I.D.

Section: 223

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 4 Question Sheets with 10 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the test.
- 5. SHOW ALL WORKING OUT IN THE SPACE PROVIDED.
- 6. SIMPLY YOUR ANSWERS AS MUCH AS POSSIBLE

Question No.	Max. Points	Points Scored
1,2	14	
3,4	20	
5,6,7	22	
8,9,10	18	
TOTAL	74	

1) [6 points] Find a value for the constant *k* such that the function will be continuous everywhere.

$$f(x) = \begin{cases} 2 - 4x & x < 2\\ kx^2 - 2x - 6 & x \ge 2 \end{cases}$$

2) [8 points] Find the value of the following limits.

a)
$$\lim_{x \to 0} \frac{1 - \cos 3h}{\cos^2 5h - 1}$$

b)
$$\lim_{x \to 0} \frac{\tan 3x^2 + \sin^2 5x}{x^2}$$

3) [10 points] Given that $y = 2x^2 + 3x$

a) Find the average rate of change over [3,5].

b) Find the instantaneous rate of change of y with respect to x at an arbitrary value of x_0 using the limit of the **Difference Quotient** as $x_1 \rightarrow x_0$.

4) [10 points] Given that $f(x) = 3x^3 - 2x^2$

a) Use the limit of the **Difference Quotient** as $h \to 0$ to find f'(x).

b) For the above function, find the equation of the tangent line at x = 1.

5) [10 points] Given that $y = \sqrt[3]{x} (x^2 - 3x + 2)$ a) Show that $\frac{dy}{dx} = \frac{7x^2 - 12x + 2}{3x^{\frac{2}{3}}}$.

b) the *x*-coordinate of the points on the graph at which the tangent line is horizontal.

c) the *x*-coordinate of the points on the graph at which the tangent line is vertical.

6) [6 points] Given that
$$y = \left(2x^7 - x^2\right)\left(\frac{x-1}{x+1}\right)$$
 find $\frac{dy}{dx}\Big|_{x=1}$

7) [6 points] Find
$$\frac{d^4 y}{dx^4}\Big|_{x=1}$$
, where $y = \frac{6}{x^4}$

•

8) [6 points] Given that $f(x) = \frac{\cot x}{1 + \csc x}$ show that $f'(x) = -\frac{\csc x}{1 + \csc x}$.

9) [6 points] Given that
$$f(x) = \frac{\sin x}{x^2 + \sin x}$$
 show that $f'(x) = \frac{x^2 \cos x - 2x \sin x}{(x^2 + \sin x)^2}$

10) [6 points] Find
$$\frac{dy}{dx}$$
, given that $y = \left[1 + \sin^3\left(x^5\right)\right]^{12}$.