MATH 111 Major Exam 2

PRINCE SULTAN UNIVERSITY

MATH 111 CALCULUS

MAJOR EXAM 2 6th JANUARY 2010

Time allowed: 75 minutes		
Name:		
<u>I.D.</u>	<u> </u>	
Instructors Name:	Section:	

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 3 Question Sheets with 7 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the test.
- 5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1	5	
2	21	
3	5	
4	5	
5	5	
6	5	
7	4	
TOTAL SCORE	50	

1) [5 points] Let $f(x) = x^2$. Use the definition of the derivative to find f'(x).

- **2)** [21 points] Find $\frac{dy}{dx}$ (a) $y = (2x^2 + x - 1)^4$
 - (b) $y = 3\sqrt[3]{x} + e^{2x} 2\log x$
 - (c) $y = \frac{\sin x}{1 + \cos x}$

- (d) $y = \sqrt{x + \tan(5x)}$
- (e) $y = \sec^2(2x) + 2^{-x}$

(f)
$$y = 2x \tan^{-1} x - \ln(1 + x^2)$$

(g)
$$x^2 + 2xy - y^2 + x = 2$$
 (Use implicit differentiation)

3) [5 points] Find the equation of the tangent line to the curve $y = 2x^2 - x + 1$ at x = 1.

4) [5 points] Show that $y = xe^x$ satisfies y'' - 2y' + y = 0.

5) [5 points] Given that f(2) = 1, f'(2) = 3, and $g(x) = \frac{xf(x)}{3-x}$. Find g'(2).

6) [5 points] Given that $y = \frac{\csc^3(x)\sin^{-1}x}{\sqrt{x}}$. Use logarithmic differentiation to find y'.

7) [4 points] The radius of a circle decreases at a constant rate of 4cm/min. Find the rate of change of the area of this circle when the radius is 6 cm. (Hint: The area of the circle $A = \pi r^2$)