PRINCE SULTAN UNIVERSITY

<u>MATH 101</u>

Finite Mathematics

MAJOR EXAM 2 <u>16th May 2009</u>

Time allowed: 120 minutes

Name:

Instructors Name:

Section:

I.D.

- 1. Answer all questions
- 2. This exam consists of 1 Cover Sheet & 7 Question Sheets with 11 questions.
- 3. You can use a calculator, **NOT** a mobile phone.
- 4. No talking during the test.

5. Show all working out in the space provided.

Question No.	Max. Points	Points Scored
1	10	
2	10	
3	8	
4	13	
5	13	
6	15	
7	6	
8	6	
9	6	
10	7	
11	6	
TOTAL SCORE	100	

Q1 [10 points] Write True (*T*) or False (*F*) for each of the following statements:

- 1) Investing at 8% compounded continuously is better than investing at 8% compounded daily.
- 2) The number of deposits for an ordinary annuity at 10% compounded semiannually in a period of 20 years is 10 deposits.
- 3) The LP maximum problem: Maximize $P = 3x_1 2x_2$

subject to the constraints $\begin{cases} x_1 + 3 \ge x_2 \\ 2x_1 + x_2 \le 4 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$

can be modified to become in standard form.

4) The solution of the LP problem that has the Simplex tableau $\begin{bmatrix} P & x_1 & x_2 & s_1 & s_2 & RHS \\ 0 & 0 & 3 & 1 & 1 & 4 \\ 0 & 1 & 1 & 0 & 1 & 4 \\ 1 & 0 & 2 & 0 & 1 & 10 \end{bmatrix}$

is
$$P_{\text{max.}} = 10, x_1 = 4, x_2 = 4$$
.

5) The objective function z = 2x + y, subject to the constraints $\begin{cases} x + y \ge 2 \\ x \ge 0, y \ge 0 \end{cases}$ has a maximum value 4.

Q2 [10 points] Circle the correct answer:

- 1) Which of the following points is in the solution set of the system of inequalities $\begin{cases} 2x+y \le 6 \\ x-2y \ge 2 \end{cases}$ (a) (0, 4) (b) (2, 3) (c) (3, -1) (d) (5, 1)
- 2) How much interest will be due on a \$2000 loan at 15% annual simple interest at the end of 18 months?

(a) \$2450 (b) \$450 (c) \$600 (d) \$2600

3) The pivot element in the following tableau is located in:

0	2	-1	1	0	-4]
0	1	3	0	1	1
1	-1	-2	0	0	0

(a) row 1, column 2 (b) row 1, column 3 (c) row 2, column 2 (d) row 2, column 3

MATH 101

Major Exam 2

4) The following tableau:	$P x_1 x_2 s_1 s_2 RHS$ $s_1 \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & & 40 \\ 0 & 1 & -1 & 0 & 1 & 20 \\ 1 & 0 & -2 & 0 & 1 & & 20 \end{bmatrix}$			
(a) is an initial tableau (c) requires additional pivot	(b) is a final tableau ing (d) indicates no solution			
5) If a minimum problem i tableau obtained is $\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$	n standard form has been solved by the Duality Principle and the final $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			
(a) min. value = 10, when $x_1 = 2$ and $x_2 = 0$ (b) min. value = 10, when $x_1 = 0$ and $x_2 = 2$ (c) min. value = -10, when $x_1 = 0$ and $x_2 = 2$ (d) min. value = 10, when $x_1 = 2$ and $x_2 = 1$				
Q5 [8 points] Find the dual maximum problem for the following minimum problem (D6 not solve): Minimize: $C = 2x_1 + x_2 + 3x_3$				
	$\int x_1 + 3x_2 + x_3 \ge 10$			
Subject to the constraints	$\Big\{ 2x_1 + x_2 + 5x_3 \le 20 \Big\}$			
	$\left\{x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\right\}$			

Q4 [13 points] Use the **geometric approach** to find the maximum and minimum values of the objective function: z = 2x + 3y

Subject to the constraints $\begin{cases} x + y \ge 4\\ 3x + y \le 6\\ x \ge 0, y \ge 0 \end{cases}$

 ${f Q5}$ [13 points] Use the Simplex method to solve the following LP problem:

Maximize: $P = 2x_1 + 5x_2 + 2x_3$ Subject to the constraints $\begin{cases} x_1 + 3x_2 + 3x_3 \le 12\\ 2x_1 + 4x_2 + 2x_3 \le 20\\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$ **Q6** [15 points] Use the **Mixed-Constraints method** to solve the following LP problem: Minimize: $z = 2x_1 + x_2$

Subject to the constraints $\begin{cases} 2x_1 + 4x_2 \ge 8\\ x_1 + 3x_2 \le 5\\ x_1 \ge 0, x_2 \ge 0 \end{cases}$

Q7 [6 points] If a bank pays 5% simple interest, how much should be deposited now to get \$2000 after 5 years?

Q8 [6 points] Find the proceeds for a discounted loan of \$2000 repaid in 2 years at a rate of 8%.

Q9 [6 points] If \$20,000 are invested in an account that pays 6% compounded monthly, how much is in the account after 6 months?

Q10 [7 points] How long will it take \$4,000 to grow to \$10,000 if it is invested at 7% compounded continuously? (Round your answer to the nearest year)

Q11 [6 points] Todd and Tami pay \$300 every 3 months into an ordinary annuity paying 8% compounded quarterly. What is the value of the annuity after 24 deposits?