Prince Sultan University

Deanship of Educational Services PYP Department / Mathematics

COURSE DETAILS:

ORIENTATION MATHEMATICS II		MATH 002	MAJOR EXAM I	Α
Semester:	Fall Semester Term 191			
Date:	Sunday October 20, 2019			
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Total	Total
Questions						
Marks	8	8	20	24	60	15

<u>Q.1A (16 points)</u> Choose the correct answer

1. **Solve** $6 + 4 \ln x = 26$

- A) 5
- B) e^{20}
- C) *e*⁵
- D) ln5
- 2. Find the **domain** of $f(x) = \log_3(2x 8)$
 - A) $(4,\infty)$
 - B) $(8,\infty)$
 - C) [4,∞)
 - D) (−4,∞)
- 3. If θ is an acute angle and $\sin \theta = \frac{1}{2}$, find $\sec \left(\frac{\pi}{2} \theta\right)$
 - A) 0.93
 - B) $\frac{1}{2}$ C) 2 D) $\frac{\sqrt{3}}{2}$

4. Determine the **quadrant** in which the terminal side of the angle $\theta = -\frac{5\pi}{6}$ lies.

- A) Q2
- B) Q3
- C) *Q*1
- D) Q4

Question	1	2	3	4
Answer				

You must write the correct answer to each question in the box below

A5. A circle has a radius of 16 feet. Find the **length of an arc** intercepted by a central angle of 150° .

- A) 19.20 feet
- B) 2400 feet
- C) 29.45 feet
- D) 41.89 feet

6. Determine the **domain** and the **asymptote** of the function $f(x) = 5 - e^{-x}$

- A) Domain: $(-\infty,\infty)$; Asymptote: y=5
- B) Domain: $(-\infty,\infty)$; Asymptote: x=5
- C) Domain: $(-\infty, \infty)$; Asymptote: x = -1
- D) Domain: $(-\infty, \infty)$; Asymptote: x = 1

7. If P(5,-5) is a point on the terminal side of angle θ . Find the **exact value** of $\csc \theta$.

A)
$$-\frac{\sqrt{2}}{2}$$

B) $\frac{\sqrt{2}}{2}$
C) $-\sqrt{2}$
D) -1

8. Find the **degree measure** of the angle: $\theta = 2.6$ rad.

- A) 0.05°
- B) 148.97°
- C) 74.48°
- D) 234°

Question	5	6	7	8
Answer				

You must write the correct answer to each question in the box below

Q.2A (4 points): Expand the logarithmic expression as much as possible and simplify. $\ln\left(\frac{x^6\sqrt{x^3+4}}{e^3(x+2)^7}\right)$

<u>Q.3 (6 points)</u>: Sketch the graph of $f(x) = \log_2(x+4) + 2$ and give the equation of the asymptote and the domain and range of f(x).

Q.4 (4 points): The value of the house is given by the exponential function, $A = 150e^{0.0645t}$ where A is the value of the house, in thousands of dollars t years after 2015. When (what year) will the house be worth \$250 thousands?

<u>Q.5 (6 points)</u>: Given that $\cos \theta = -\frac{5}{8}$ and $\tan \theta > 0$. Find the **exact value of the remaining** trigonometric functions of the angle θ .

<u>Q.6A (5 points)</u>: Find the **<u>exact</u>** value. (DO **NOT** use the calculator directly and **SHOW** your steps)

1) $\sec(225^\circ)$ 2) $\sin\left(-\frac{31\pi}{3}\right)$

<u>Q.7 (7 points)</u>: Determine the **amplitude**, period, and phase shift, then sketch the graph of one period $y = 5\cos\left(\frac{1}{2}x - \frac{\pi}{2}\right)$

<u>Q.8 (3+4 points)</u>: Solve the following equations: a) $9^x = 3^{2-x}$

b) $\log_4(x-3) + \log_4(x+5) = \log_4(2x+1)$

<u>Q.9 (5 points)</u>: Find the six trigonometric functions for the angle θ for the given right triangle.

