PRINCE SULTAN UNIVERSITY					
	<u>MATH 101</u>		FINITE MATH		
	MAJOR E	<u>XAM 1</u>	<u>22nd MA</u>	RCH 2006	
Start : End:	4:00 pm 6:00 pm				
Name:					
<u>I.D.</u>			_		
Section:	Circle One	(8 a.m.– Se	c. 43)	(11 a.m. – Sec	. 42)

- 1. Answer all questions
- ^Y. This exam consists of 1 Cover Sheet & 6 Question Sheets with 10 questions.
- ^γ. You can use a calculator, **NOT** a mobile phone.
- ٤. No talking during the test.
- •. Show all working out in the space provided.

Question No.	Max. Points	Points Scored	
1,2	14		
3,4	16		
5,6	14		
7	12		
8,9	18		
10	12		
TOTAL	86		

- 1) [8 points] Consider the two lines $\frac{L: 4x + 3y = 2}{M: 2x y = 1}$
 - a) Show that the two lines intersect.

b) Find the point of intersection.

^{γ}) [6 points] Find the equation of the line, in <u>Slope Intercept Form</u>, containing the point (-2, -5) which is perpendicular to the line containing the points (-4, 5) and (2, -1).

- ^r) [8 points] The average score on the MATH 101 final has been steadily increasing over the last six years at PSU. In 2000 the average score was 62%, while in 2004 the average score was 70%. Assume the rate of increase is steady.
 - a) Write an equation that relates the average final score *S*, to time *t*, where *t* is the year.

- b) If this trend continues what will be average final score in 2006?
- ٤) [8 points] Le Choc Confectionery Ltd. is a company that produces fine Belgian chocolates. The daily cost of producing each chocolate is \$0.55 and each one can be sold for \$2.50. The daily operational overhead is \$300.
 - a) Determine the revenue R, that the company makes from selling x chocolates per day.
 - b) Determine the cost C, to the company for producing *x* chocolates per day.
 - c) How many chocolates must be sold every day to **break even**?

•) [10 points] Solve the following system using the method of elimination, if the system has no solution, say that is inconsistent : $\begin{cases} x+y-z=6\\ 3x-2y+z=-5\\ x+3y-2z=14 \end{cases}$

7) [4 points] Write the augmented matrix of the following system. Do not attempt to solve it. $\begin{cases} 4x_1 - x_2 + 2x_3 - x_4 = 4\\ x_1 + x_2 + 6 = 0 \end{cases}$

$x_1 + x_2 + 0 = 0$
$2x_2 - x_3 + x_4 = 5$

		$\int 2x + y + z = 6$
۷)	[12 points] Solve the following system using <u>matrices</u> : <	x - y - z = -3
		3x + y + 2z = 7

^) [10 points] Find the inverse of
$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0 \end{bmatrix}$$

⁹) [8 points] Solve the system by using A^{-1} the inverse of the co-efficient matrix $\begin{cases} x - y + z = 8\\ 2y - z = -7\\ 2x + 3y = 1 \end{cases}$ V) [12 points] Find the maximum and minimum values of the objective function z = 10x + 12y, subject to the following constraints:

 $\begin{cases} x+y \le 7\\ 2x+3y \le 18\\ 2x+y \le 10\\ x \ge 0\\ y \ge 0 \end{cases}$