Prince Sultan University

Department of Mathematics and

General Sciences

Math 225

Major Exam II Term 162

Duration: 90 minutes

Name: Section 429, 666

Student Number:

Grading policy:

Questions	Q.1	Q.2	Q.3	Q.4	Q.5	Q.6	Total
Question Mark	5	10	6	8	10	12	51
Student Mark							

Good Ruck

1. (5 points) For the equation $(x^2 - 4)y^{(6)} + x^3y''' + 9y = 0$, determine intervals in which solutions are sure to exist.

2. (10 points) Given that $y_1 = \sin x^2$ is a solution of $xy'' - y' + 4x^3y = 0$, x > 0. Use the method of reduction of order to find a second solution of the equation. Hint: use the integration $\int \frac{1}{\sin^2 u} du = -\cot u + C$.

3. (6 points) Find all singular points of the equation x(3-x)y'' + (x+1)y' - 4y = 0 and determine whether each one is regular or irregular.

4. (8 points) Find the general solution of $y^{(4)} + 2y'' + y = 4 + \cos 2t$.

5.	(10 points) Use method of variation of parameters to find the general solution of the nonhomogeneous Euler equation $x^2y'' - 2xy' + 2y = 2x^3e^x$.								

6. (12 points) Find a power series solution of (1-x)y'' + y = 0 about the point $x_0 = 0$. Write the first three terms in each of the two solutions.