Prince Sultan University

Department of Mathematical Sciences Maior II Exam

Semester I, 2012 FALL(121) 8th December 2012

MATH 111 – CALCULUS I

Time Allowed : 90 minutes Maximum Points: 80 points

:_____

Name of the student: _____

ID number

Dr. Abdelouahid Hamdi		Mr. Abid Zargar	Mr. Khaled Naseralla
Section 250	Section 224	Section 249	Section 223
10 11	11 12	8 9	10 11

For All The Students:

- You may use a **SCIENTIFIC CALCULATOR** that does **NOT** have **GRAPHING** capabilities.
- You may **NOT** borrow a calculator from anyone.
- Answer all the questions.
- This exam consists of <u>a total of 7</u>
 <u>pages and 10 questions.</u>
- Show all the key steps of your work in the space provided for each question. Please indicate your **FINAL** answers clearly.
- There should be **NO** talking during the exam.

Question	Maximum Points	Points Earned
1 , 2	14	
3,4,5	17	
6 , 7	12	
8,9	13	
10	24	
Total	80	

<u>Q.1 (6 points)</u>: If $y = e^x \sin(x)$. Show that y'' - 2y' + 2y = 0

Q.2 (8 points): Find all the points where the curve $4x^2 + y^2 - 8x + 4y + 4 = 0$ has;

- (i) Horizontal tangent lines
- (ii) Vertical tangent lines

Q.3 (4 points): Prove the identity: $\cosh(2x) = \cosh^2(x) + \sinh^2(x)$

Q.4 (8 points): Find the equations of the <u>tangent and normal lines</u> to the graph of the curve $xy^3 - 3x^2 = 5$ at x = 1

Q.5 (5 points): A cylindrical water tank with a radius of 4m. Water is being pumped from the tank at a rate of $2.4m^3 / \text{min}$. Find the rate at which the water level is decreasing.

Q.6 (6 points): Use the limit definition of the derivative to find f'(4) for $f(x) = \sqrt{x-2}$

Q.7 (6 points): Find the limit:

•

(i) $\lim_{x \to 0} \frac{\sin(4x)}{\sin(5x)\cos(x)}$

(ii)
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta}$$

<u>Q.8 (5 points)</u>: Determine whether f is differentiable at x = 1 or not. Show your work

$$f(x) = \begin{cases} x^{2} + 2 & \text{if } x \le 1 \\ x + 2 & \text{if } x > 1 \end{cases}$$

<u>Q.9 (8 points)</u>: Find the derivative of each function (i) $f(x) = \frac{1}{x + \sqrt{1 - x^2}}$

(ii)
$$k(x) = x^2 \cos(3x)$$

<u>Q.10 (24 points)</u>: Find the derivative of each function (iii) $f(x) = e^{5x} \ln\left(\tanh(\frac{x}{2})\right)$

(iv)
$$g(x) = \cosh^{-1}(5x)$$

(v)
$$y = \frac{e^{x^2}\sqrt{x^2+3}}{(x^3+2)^5(x^2+1)^2}$$

(viii)
$$f(x) = \log_3(x) \left[\sin^{-1}(x) \right]^2$$

(vii)
$$g(x) = e^{\tan^{-1}\sqrt{3x}}$$

(vi)
$$y = (x^2 - 3x + 5)^{\cos(x)}$$