

Prince Sultan University Orientation Mathematics Program

MATH 223

Class Major Test I Semester II, Term 162

Time Allowed: 90 minutes

Q1. (4 Points) Let
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 \\ 2 & 5 \end{bmatrix}$.

Evaluate the following

- a. tr(AB)
- b. $(2A + B)^T$
- Q2. (4 Points) Show that if A is invertible, then AA^T is also invertible.

Q3. (4 Points) Let
$$f(x) = x^2 - 2x$$
 be a function. Evaluate $f(A)$ where $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$

Q4. (8 Points) Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 be a matrix such that det (A) = -2.

Evaluate the following:

- a. det(3A) =
- b. $det(3A^{-1}) =$
- c. $\det((3A)^{-1}) =$

d.
$$det(B) =$$
, where $B = \begin{bmatrix} g & h & i \\ d+2a & e+2b & f+2c \\ 5a & 5b & 5c \end{bmatrix}$.

Q5. (4 Points) Use Cramer's rule to find the value of x only.

$$x - 4y + z = 6$$

$$4x - y + 2z = -1$$

$$2x + 2y - 3z = -2$$

Q6. (5 Points) Show that for any vectors u, v in \mathbb{R}^n , the following equality holds: $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$

Q7. (4 Points) Find the distance between the point (1, -3, 1) and the plane 2x - 2y + z = 5.

Q8. (6 Points) Find the vector, parametric equations and the standard equation of the plane containing the point (2, -2, 5) and parallel to the vectors (3, 0, 3) and (-4, 3, 1).

Q9. (4 Points) Show that for any vectors u, v in \mathbb{R}^3 and a scalar k we have $k(u \times v) = (ku) \times v$

Q10. (3 Points) Find a vector w that is perpendicular to the vectors (-2, 3, 5) and (2, -1, 2).

Q11. (4 Points) Find the area of the parallelogram in \mathbb{R}^2 determined by the vectors u = (-2, 3) and v = (1, 5).