

Prince Sultan University Department of Mathematics and Physical Sciences

> Math 215 First Midterm Examination Semester I, Term 121 Thursday, November 8, 2012

Time Allowed:80 minutes

Name:

Student Number:

Important Instructions

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 6. This examination has 5 problems, some with several parts. Make sure your paper has all these problems.

Grading Policy:

Questions	Q.1	Q.2	Q.3	Q.4	Q.5	Total
Student Marks						
Maximum Marks	15	15	20	12	18	80

Q.1 (8+7 points) Evaluate the following limits if they exist: ry - 2r - y + 2

a)
$$\lim_{(x,y)\to(1,2)}\frac{xy-2x-y+2}{x^2-2x+y^2-4y+5}.$$

b)
$$\lim_{(x,y)\to(0,0)}\frac{2x^2\sin y}{2x^2+y^2}.$$

Q.2 (3+12 points) Consider the function $f(x, y) = \ln(x^2 + y^2 - 9) + 5e^{2xy}$. a) Describe the domain of f.

b) Find f_x and f_{xy} . Is $f_{xy} = f_{yx}$? Justify your answer.

Q.3 (10+10 points)

a) Compute the area of the region bounded by y = 2x, y = 3 - x, y = 0.

b) Find the surface area of the portion of the paraboloid $z = 4 - x^2 - y^2$ above xy-plane.

Q.4 (12 points) Evaluate $\iiint_Q f(x, y, z) dV$ where f(x, y, z) = 3x - 2y and Q is the tetrahedron bounded by 4x + y + 3z = 12 and the coordinate planes.

<u>**Q.5</u>** (6+6+6 points)</u>

a) Convert the double integrals $\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} dy dx$ to polar coordinates.

b) Convert the triple integrals
$$\int_{-1-\sqrt{1-x^2}}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{x^2+y^2}} dz dy dx$$
 to cylindrical coordinates.

c) Convert the triple integrals
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{8-x^2-y^2}} (x^2 + y^2 + z^2)^{\frac{3}{2}} dz dy dx$$
 to spherical coordinates.