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Question 1 [14 points]: Take the matrix A :[ A J

(@) Find the eigenvalues and bases of the eigenspaces of each eigenvalue for A.
(b) What is the invertible matrix P and diagonal matrix D such that AP = PD?
(c) What are the eigenvalues and bases of the eigenspaces for A%.

Start working below:



Question 2 [14 points]: Answer each of the following

(a) Write the standard matrix to rotate about the origin by 30 degrees in R?. What is the effect
(image) of rotating a line segment joining points B(—2,2) and C(4,0). Draw the original line
segment and the rotated line segment.

(b) Using a linear transformation standard matrix, find the reflected triangle in the x-axis R? of

the triangle with verticesA(1,1), B(3,2) and € (4,0). [Do not draw, Give the vertex coordinates of
the reflected triangle]

Start working below:



Question 3 [10 points]: Use the Wronskian to show that f; (x) = x? + 1, f,(x) = x> — 1, and
f3(x) = x + 1 are linearly independent. Then write p(x) = ax? + bx + c as an explicit linear
combination of f;, f, and f; (this shows that these functions span P,).

Start working below:



Question 4 [10 points]: Let VV be the vector space of 2 x 2 matrices and W the subspace of VV such
that W': Set of matrices A = [Ccl Z] such that trace(4) = a+d = 0.
(@) Verify that W is a subspace of V.

1 0|0 1|0 O
(b) Show that S = : : is a basis for .
0 -1{|0 0|1 O

2
(c) Find a matrix B whose coordinate vector is [B], =| 3 |.
4

Start working below:



Question 5 [7 points]: Suppose B; = {u4,u5} and B, = {v,, v,} are basis vectors for V = R2.

1 3
Suppose that u; = (1,2), u, = (2,3) and a transition basis matrix is PBﬁBZ = {_2 2]

(@) What is the coordinate vector [W] B, of w = (0,1) with respect to B,?

(b) What is the transition matrix PBﬁBl
Start working below:



