Prince Sultan University

Deanship of Educational Services
Department of Mathematics and General Sciences

COURSE DETAILS:

LINEAR A	LGEBRA MATH 22	3 MAJOR EXAM II
Semester:	Spring Semester Term 182	
Date:	Sunday April 7 th , 2019	
Time Allowed:	90 minutes	

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	730
Instructor's Name:	Dr. Jamiiru Luttamaguzi

INSTRUCTIONS:

- Start your working immediately below the problem and <u>continue to use the back</u> of the page for extra space.
- You may use a scientific calculator that does not have programming or graphing capabilities.
- **NO borrowing** calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work where needed and be organized.

GRADING:

	Page 2	Page 3	Page 4	Page 5	Page 6	Total	Total
Question	1	2	3	4	5	Out of 55	Out of 25
Marks	14	14	10	10	7	55	25
Grade							

Question 1 [14 points]: Take the matrix $A = \begin{bmatrix} -6 & 2 \\ 4 & 1 \end{bmatrix}$

- (a) Find the eigenvalues and bases of the eigenspaces of each eigenvalue for A.
- (b) What is the invertible matrix P and diagonal matrix D such that AP = PD?
- (c) What are the eigenvalues and bases of the eigenspaces for A^4 .

Question 2 [14 points]: Answer each of the following

- (a) Write the standard matrix to rotate about the origin by 30 degrees in \mathbb{R}^2 . What is the effect (image) of rotating a line segment joining points B(-2,2) and C(4,0). Draw the original line segment and the rotated line segment.
- (b) Using a linear transformation standard matrix, find the reflected triangle in the *x*-axis R^2 of the triangle with vertices A(1,1), B(3,2) and C(4,0). [Do not draw, Give the vertex coordinates of the reflected triangle]

Question 3 [10 points]: Use the Wronskian to show that $f_1(x) = x^2 + 1$, $f_2(x) = x^2 - 1$, and $f_3(x) = x + 1$ are linearly independent. Then write $p(x) = ax^2 + bx + c$ as an explicit linear combination of f_1 , f_2 and f_3 (this shows that these functions span P_2). **Start working below:**

Question 4 [10 points]: Let V be the vector space of 2×2 matrices and W the subspace of V such

- Question 4 [10 points]: Let V be the vector space of $Z \times Z$ matrices and that W: Set of matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $\operatorname{trace}(A) = a + d = 0$. (a) Verify that W is a subspace of V.

 (b) Show that $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ is a basis for W.

 (c) Find a matrix B whose coordinate vector is $\begin{bmatrix} B \end{bmatrix}_S = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$.

Question 5 [7 points]: Suppose $B_1 = \{u_1, u_2\}$ and $B_2 = \{v_1, v_2\}$ are basis vectors for $V = R^2$.

Suppose that $\mathbf{u}_1 = (1,2)$, $\mathbf{u}_2 = (2,3)$ and a transition basis matrix is $P_{B_1 \to B_2} = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$.

- (a) What is the coordinate vector $[w]_{B_2}$ of w = (0,1) with respect to B_2 ?
- (b) What is the transition matrix $P_{B_2 o B_1}$