Prince Sultan University

Deanship of Educational Services
Department of Mathematics
and General Sciences

COURSE DETAILS:

LINEAR ALGEBRA		MATH 223	MAJOR EXAM I		
Semester:	Spring SemesterTerm 182				
Date:	Wednesday February 20 th , 2019				
Time Allowed:	90 minutes				

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	730
Instructor's Name:	Dr. Jamiiru Luttamaguzi

INSTRUCTIONS:

- Continue to use the back of the pages for extra space of the same the paper of the problem.
- You may use a scientific calculator that does not have programming or graphing capabilities.
- NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work where needed and be organized.

GRADING:

	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions	1-7	8	9	10	Out of 80	Out of 25
Marks	22	14	11	33	80	25
Grade						_

Part I: Short Answer Questions [18 points, 3 points each]

- 1. Suppose the matrices have indicated dimensions: $A(4 \times 2)$, $B(4 \times 4)$, $C(4 \times 2)$, and $D(2 \times 4)$. The dimension of $A^{T}(B + (CD)^{-1})$ is ______.
- 2. Suppose matrices A and B have dimension 3×3 and det(A) = 2, det(B) = 3. Then $det(2A^{-1}B^T) =$ ______.
- 3. Suppose the equation below has A, B, and C as $n \times n$ invertible matrices. Solve the equation below for Y.

$$A^{-1}YB = C$$

The solution Y =

- 4. Suppose \boldsymbol{a} and \boldsymbol{b} are vectors in R^2 , \boldsymbol{c} is a vector in R^3 and k a real scalar. Which of the following operations make sense (circle all that apply)
 - (i) $\boldsymbol{a} \cdot \boldsymbol{b} + k$

(ii) $k \|\boldsymbol{a}\|$

- (iii) ||b a|| + ||c||
- 5. The distance between the plane 2x 4y + z = 2 and the origin is ______.
- 6. The diagonal matrix D for which the matrix product is true

$$\begin{bmatrix} 2 & -4 & 6 \\ -6 & 2 & 4 \\ 4 & -2 & 4 \end{bmatrix} \times D = \begin{bmatrix} 2 & -8 & 18 \\ -6 & 4 & 12 \\ 4 & -4 & 12 \end{bmatrix}$$

is
$$D =$$

and
$$D^k =$$

Part II: Detailed Answer Questions (Show working) [62 points]

7. [4 points] Take the matrix $A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$. What is $A + 4(A^{-1})$?

8. [3+5+5+1 = 14 points] Take the matrix below

$$A = \begin{bmatrix} -3 & 5 & 7 \\ 0 & 1 & 2 \\ -1 & 1 & 4 \end{bmatrix}$$

- (a) What is $A + A^T$ and trace $(A + A^T)$?
- (b) Evaluate the determinant of A using the cofactor method.
- (c) Evaluate the determinant of A using row reduction.
- (d) Is the matrix A invertible?

[If needed, continue working at the back of this page]

9. [1+5+1+1+1+2=11 points] Take the linear system below

$$\begin{cases} w + 5x + 9y - z = 4 \\ 2w + 2x - 2y + 6z = 0 \end{cases}$$

- (a) Is the system homogeneous?
- (b) Solve the system using the Gaussian-Jordan elimination method.
- (c) What are the free variables?
- (d) What are the leading variables?
- (e) What are the pivot positions?
- (f) Write the system above in form of matrix product in the form AX = B.

[If needed, continue working at the back of this page]

- 10. [2+5+5+3+3+4+4+4+3 = 33 points] Define vectors $\mathbf{v} = (-2,2)$ and $\mathbf{w} = (3,2)$.
 - (a) Evaluate $\mathbf{a} = \mathbf{v} + 3\mathbf{w}$.
 - (b) Find the angle between \boldsymbol{v} and \boldsymbol{w} . Are the two vectors orthogonal?
 - (c) Evaluate $\mathbf{b} = proj_{\mathbf{v}}\mathbf{w}$.
 - (d) Find the unit vector parallel but opposite to \mathbf{w} .
 - (e) Verify Cauchy's inequality $|v \cdot w| \le ||v|| ||w||$
 - (f) Draw v and w at the origin and draw the vector u = v 2w at the origin.
 - (g) What is ||5v|| d(v, w)?
 - (h) What is the terminal point B of vector \mathbf{v} if its initial point is set to point A = (1,1)?
 - (i) For what of x is the vector $\mathbf{u} = (x, -3)$ parallel to vector \mathbf{w} ?

[If needed, continue working on back pages]