# **Prince Sultan University**

Deanship of Educational Services Department of Mathematics and General Sciences



### **COURSE DETAILS:**

| LINEAR        | ALGEBRA                              | MATH 223 | MAJOR EXAM II |  |  |
|---------------|--------------------------------------|----------|---------------|--|--|
| Semester:     | Spring Semester Term 172             |          |               |  |  |
| Date:         | Sunday April 22 <sup>nd</sup> , 2018 |          |               |  |  |
| Time Allowed: | 90 minutes                           |          |               |  |  |

### **STUDENT DETAILS:**

| Student Name:      |                         |
|--------------------|-------------------------|
| Student ID Number: |                         |
| Section:           | 157                     |
| Instructor's Name: | Dr. Jamiiru Luttamaguzi |

### **INSTRUCTIONS:**

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

## **GRADING:**

|           | Page 1 | Page 2 | Page 3 | Page 4 | Total | Total |
|-----------|--------|--------|--------|--------|-------|-------|
| Questions | 1,2    | 3,4    | 5      | 6      |       |       |
| Marks     | 11     | 11     | 12     | 11     | 45    | 25    |
| Grade     |        | _      |        |        |       | _     |

- 1. [8 points] Short Answers: (Just give answer, no partial credit)
  - (i) The dimension of the vector space of *n*-degree polynomials  $P_n$  is: \_\_\_\_\_\_.
  - (ii) The dimension of the vector space of 2 by 3 matrices  $M_{2x3}$  is: \_\_\_\_\_\_.
  - (iii) The characteristic polynomial of the standard matrix of the linear transformation T(x, y) = (2y, 2x) is \_\_\_\_\_\_.
  - (iv) The rows of a matrix A whose det(A) = 4 are (select only one) (a) Linearly Dependent (b) Linearly Independent
  - (v) Does the vector (4,0,6) belong to span $(\{1,0,0\},(2,0,3)\}$ ? (select only one) (a) Yes (b) No.
  - (vi) The set  $W = \{A \text{ functons } f \text{ in } C(-\infty, \infty) : \text{ such that } f(0) = 0\}$  is a subspace of  $C(-\infty, \infty)$ . (select only one) (a) Yes (b) No
  - (vii) Take the basis  $B = \{(1,1,1), (0,-1,-1)\}$ . The vector v whose coordinate vector is  $(v)_B = (2,2)$  is v =
  - (viii) Take  $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$  and p(x) = 8x. The distance d(p, 2p) is \_\_\_\_\_\_
- 2. [3 points] What is the standard matrix M in  $R^2$  of the operation: A projection on to the x-axis followed by a rotation clockwise around the origin by  $45^{\circ}$  (degrees)?

- 3. [3+1+3+1 = 8 points] Take two linear transformations  $T_1, T_2 : R^2 \to R^2$  defined by  $T_1 : w_1 = 4x_1 + 3x_2, w_2 = x_1 x_2$  and  $T_2 : w_1 = 24x_1, w_2 = 24x_2$ .
  - (a) Write down the matrix representation  $[T_1^{-1}]$ .
  - (b) Find the image under  $T_1^{-1}$  of the point (7,7).
  - (c) What is the matrix representation of  $[T_1^{-1} \circ T_2]$ ?
  - (d) Find  $(T_1^{-1} \circ T_2)(0,1)$ .

4. [3 points] Find the value(s) of x that make the set  $S = \{(1,4,0),(x,0,1),(4,0,x)\}$  linearly independent.

- 5. [3+2+2+5=12 points] Let  $B = \{u = (1,2,3), v = (4,10,16)\}$  be a basis for a subspace W in  $R^3$  using the standard inner product  $\langle u, v \rangle = u_1v_1 + u_2v_2 + u_3v_3$ .
  - (a) What is ||u|| = ?, ||v|| = ?, and  $\langle u, v \rangle = ?$
  - (b) Use your answers in (a) to compute  $\langle u+2v, -u+3v \rangle$
  - (c) What is the angle in degrees between u and v?
  - (d) What is the basis of the orthogonal compliment  $W^{\perp}$  of W?

6. [11 points] Solve the differential equation system with the given initial conditions:

$$\begin{cases} x_1' = -7x_1 - 6x_2 \\ x_2' = 15x_1 + 12x_2 \end{cases}, \text{ with } x_1(0) = 1 \text{ and } x_2(0) = 1.$$