Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

LINEAR	RALGEBRA	MATH 223	MAJOR EXAM I		
Semester:	Spring Semester Term 172				
Date:	Wednesday Marc	ch 7 th , 2018			
Time Allowed:	90 minutes				

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	157
Instructor's Name:	Dr. Jamiiru Luttamaguzi

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Total	Total
Questions	1	2,3	4,5	6,7		
Marks	13	10	11	16	50	25
Grade						_

1. [6+2+2+3] Take the linear system matrix augmented form below in terms of v, w, x, y, and z.

$$\begin{bmatrix} 2 & 4 & 0 & 0 & 0 & 8 \\ -2 & -4 & 1 & 0 & 5 & -10 \\ 2 & 4 & 0 & 1 & 3 & 10 \end{bmatrix}$$

- (a) Reduce the matrix augmented form above to Reduced Row Echelon Form (RREF).
- (b) What are the pivot positions?
- (c) What are the free variables?
- (d) Solve the system.

2. [3+3] Consider the linear system in terms of x, y, and z.

$$\begin{cases} x + 4z = 9\\ ax + 2y = 9\\ 3x + 3y = 10 \end{cases}$$

- (a) Suppose the determinant of the coefficient matrix is 24, find the value of a?
- (b) Use Cramer's rule to find the value of x.

3. [2+2] Suppose matrices *A* and *B* are given below:
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$

- (a) Compute $A + A^{-1}$
- (b) Write down the column-row expansion of $B^T A^T$

- 4. [2+2+3] Suppose the determinants of 3×3 square matrices A and B are 4 and 5 respectively.
 - (a) What is $det(2A^T)$?
 - (b) What is $\det(2A^{-1})$?
 - (c) Suppose $f(x, y) = 2x^2y^{-3}$. What is $\det(f(A, B))$?

5. [4] Find the orthogonal projection of the vector u = (3.8) to the normal vector of the line 4x + 3y = 5 in R^2 . What is the length of this orthogonal projection?

6. [3] Find the distance between the point P(3,8) and the line 4x + 3y = 5 in R^2 .

- 7. [3+3+1+4+2] Let u = (1,-5,4,0), v = (2,1,-1,1), and w = (0,1,0,-1) be vectors in \mathbb{R}^4 .
 - (a) Evaluate $\| \|u 2v\| w \|$.
 - (b) Evaluate $\|(u \cdot v)w\|$.
 - (c) Are vectors v and w orthogonal or not orthogonal? Give the reason.
 - (d) Evaluate the vector component of u perpendicular to v.
 - (e) Find the value(s) of k such that the vector $a = (k^2, k, 1, 0)$ is orthogonal to the vector u.