Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

LINEA	R ALGEBRA	MATH 223	FINAL EXAM	
Semester:	Spring Semester Term 172			
Date:	Tuesday May 8 th , 2	2018		
Time Allowed:	180 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	157
Instructor's Name:	Dr. Jamiiru Luttamaguzi

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

Page	1	2	3	4	5	6	7	Total	Total
Question	1	2	3	4	5	6	7		
Marks	10	11	11	18	8	11	11	80	40
Grade									

1. [2+5+3 pts.] Take the **augmented form** in Echelon Form of a homogeneous system Ax = 0

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) What are its pivot columns?
- (b) Assign variables to the system and solve it.
- (c) What is the basis and dimension of the solution space?

2. [3+5+3 pts.] Let matrix A be defined as

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 7 & -5 \\ -3 & -1 & -2 \end{bmatrix}$$

- (a) Compute det(A) using the cofactor expansion method.
- (b) Compute det(*A*) using the row reduction method.
- (c) What is $det(3A^{-2})$? Do not approximate your answer.

3. [3+6+2 pts.] Define an inner product on P_2 as $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$ and let p, q in P_2 be

$$p(x) = 12x, q(x) = 6x^2$$
.

- (a) Compute $\langle p, q \rangle$
- (b) Compute the angle in degrees between p and q (to 1 decimal). Are p and q orthogonal?
- (c) Use the Wronskian to show p and q are linearly independent.

- 4. [4+5+2+7 pts.] Let $W = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \text{ are real numbers} \right\}$ be a subset of $M_{2\times 2}$.
 - (a) Show that W is a subspace of $M_{2\times 2}$.
 - (b) Take set $S = \left\{ C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$. Show that S is a basis for W.
 - (c) Write $F = \begin{bmatrix} \frac{1}{2} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{2} \end{bmatrix}$ as a linear combination of basis elements C and D.
 - (d) Define an inner product on $M_{2\times 2}$ as $< A, B> = \operatorname{trace}(A^TB)$. With this inner product the basis S is orthogonal (do not show this).

Take a matrix $G = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$. Find the projection $\operatorname{proj}_W(G)$ of G to W using basis S.

- 5. [2+2+4 pts.] Consider the standard inner product on R^2 . Take the standard matrix M in R^2 of the transformation that reflects in the x-axis and the standard matrix N in R^2 of the transformation that rotates counterclockwise by 90° .
 - (a) Write down *M*. Is *M* an orthogonal matrix or not? Justify?
 - (b) Write down *N*. Is *N* an orthogonal matrix or not? Justify?
 - (c) Let $v = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, and $w = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$. Compute the 3 distances d(v, w), d(Mv, Mw), and d(Nv, Nw).

6. [11 pts.] Hooke's Law states that the force y applied to a uniform spring is a linear function of the length x of the spring. That is y = a + bx. Measurements with errors are done as follows

Weight, y in pounds	0	1	2	3
Length x in inches	-1.4	0.9	3.7	6.2

Find the least squares straight line fit y = a + bx to the data and use it to approximate the spring constant b to 1 decimal place.

7.
$$[1+3+5+2 \text{ pts.}]$$
 Let A be the matrix $A = \begin{bmatrix} 0 & 3 \\ 2 & -1 \end{bmatrix}$.

- (a) What are the eigenvalues of A?
- (b) Show that the matrix $P = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$ diagonlizes the matrix A.
- (c) Compute and simplify A^{10} using *diagonalization*. (d) Does *P* orthogonally diagonalize *A*? Why or why not?