

Prince Sultan University Orientation Mathematics Program

MATH 223 Class Major Test II Semester II, Term 142 Wednesday, May 6th, 2015

Time Allowed: 90 minutes

Student Name:			
Student ID #:			

Important Instructions:

- 1. Once you start the exam, there are no bathroom breaks.
- 2. You may use a scientific calculator that does not have programming or graphing capabilities.
- 3. You may NOT borrow a calculator from anyone.
- 4. You may NOT use notes or any textbook.
- 5. There should be NO talking during the examination.
- 6. No usage of phone during exams. Turn it off before starting the exam.
- 7. Your exam will be taken immediately if your mobile phone is seen or heard.
- 8. Looking around or making an attempt to cheat will result in your exam being cancelled.

Problems	Max points	Student's Points
1	8	
2	12	
3	15	
4	8	
5	6	
6	8	
7	18	
Total	75	

1. (8 points) Let u = (3i, 1-4i), v = (1-i, 2i). Given the equation $2x - 3iu = \overline{v}$ where a complex vector x = (a, b) is in C^2 , find a and b.

2. (12 points) A triangle P in \mathbb{R}^2 has corners $C_1(3,-3)$, $C_2(0,0)$ and $C_3(3,0)$.

(a) Write a transformation matrix A that rotates points in R^2 about the origin by 45° , and the transformation matrix B that that contracts points by $\frac{1}{3}$.

(b) Use matrices A, B to get the image of the corners when transformed by A followed by the transformation with matrix B. (approximate answer to 2 decimal place)

(c) Draw the original set of vertices P and the final transformed set Q of vertices and shade the resulting triangles.

3. (15 points) Consider the set P₂ of polynomials of degree 2. Let W be a subset of P₂ defined as follows: W = {p(x) = ax² + bx + c : p(0) = 0} which can also be written as W = {p(x) = ax² + bx : a,b ∈ R}.
 (a) Show that W is a subspace of P₂.

(b) Use a definition or Wronskian to show that the set $B = \{2x^2 + x, x^2 + x\}$ is linearly independent and that $C = \{2x^2 + 2x, x^2 + x\}$ is not linearly independent.

(c) Find the coordinate vector of $p(x) = 4x^2 - 9x$ with respect to B.

4. (8 points) Given a matrix $A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 3 & 2 \\ 0 & 1 & 2 \end{bmatrix}$. Show that the columns of matrix A are linearly dependent:

(a) Using the definition.

(b) Using the determinant.

6. (8 points) Consider the inner product space
$$M^2$$
 of 2×2 matrices with the inner product $\langle A, B \rangle = \text{tr}(A^T B)$. Let $A = \begin{bmatrix} 2 & 1 \\ -4 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 5 \\ -1 & 2 \end{bmatrix}$. Compute the following (a) $||A||$

(b)
$$d(A,B)$$

- 7. (18 points) Given the matrix $A = \begin{bmatrix} 4 & 5 \\ 4 & 3 \end{bmatrix}$. Answer (a)-(d)
 - (a) Find the eigenvalues and bases for the corresponding eigenspaces of the matrix A.

(b) Write the matrix D, the matrix P that diagonalizes A and find P^{-1} .

(c) Use the diagonalization to find A^{10} . Do not simplify.

(d)	Use the diagonalization to solve the system of ODEs
	$y_1 = 4y_1 + 5y_2$ $y_2 = 4y_1 + 3y_2$
	with initial conditions $y_1(0) = 1$, $y_2(0) = 0$.

BONUS: Suppose V is an inner product space and $||u|| = \sqrt{5}$, $||v|| = 2\sqrt{2}$, and $||u|| = \sqrt{5}$. Find ||u - v||?