

Prince Sultan University Orientation Mathematics Program

MATH 223 Final Exam Semester II, Term 142 Tuesday, May 26th, 2015

Time Allowed: 120 minutes

Student Name:		
Student ID #:		

Important Instructions:

- 1. Once you start the exam, there are no bathroom breaks.
- 2. You may use a scientific calculator that does not have programming or graphing capabilities.
- 3. You may NOT borrow a calculator from anyone.
- 4. You may NOT use notes or any textbook.
- 5. There should be NO talking during the examination.
- 6. No usage of phone during exams. Turn it off before starting the exam.
- 7. Your exam will be taken immediately if your mobile phone is seen or heard.
- 8. Looking around or making an attempt to cheat will result in your exam being cancelled.

Problems	Max points	Student's Points
1	9	
2	6	
3	6	
4	14	
5	6	
6	16	
7	13	
8	10	
Total	80	

- 1. [9] Answer True or False
 - (a) [] If S is a linearly independent set then it is orthogonal set.
 - (b) [] The volume of a parallelepiped made by three vectors u, v, and w is $|u \times (v \times w)|$
 - (c) [] The values of determinants $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$ and $\begin{vmatrix} d & e & f \\ -a & -b & -c \\ g & h & i \end{vmatrix}$ are the same.
 - (d) [] If A is invertible, then the reduced row echelon form of A is I_n
 - (e) [] For any square matrix det(A+B) = det(A) + det(B)
 - (f) [] All square matrices with distinct eigenvalues and diagonalizable.
 - (g) [] For any square matrix: $(A^{T})^{-1} = (A^{-1})^{T}$
 - (h) [] The inverse of an invertible upper triangular matrix is also upper triangular.
 - (i) [] The vector space: span $\{(1,0,1),(0,1,0),(1,1,1)\}$ has dimension 2.
- 2. **[2+4]** Consider a vector a = (-2,3,7) and a point P(2,0,-2).
 - (a) Find in standard form an equation of a plane through P with normal a.

(b) Find the shortest distance from P(1,1,1) to the plane in (a) above.

- 3. [4+2] Let S and T linear transformations: S(x, y) = (2y, 2x) and T(x, y) = (x + y, 2x).
 - (a) Write a formula for the composite $T \circ S$ and its matrix representation.

(b) Use (a) to get $(T \circ S)(1, -2)$

4. [8+3+3] Let a linear operator $L: \mathbb{R}^2 \to \mathbb{R}^2$ such that $L(1,1) = (1,3)$ and $L(1,-1) = (1,3)$	(3,1)
--	-------

(a) Find a general formula for L(x, y).

(b) Find the value of L(4,-5).

- (c) Write the matrix representation of L.
- 5. [6] Let $L_1: R^2 \to R^2$ be a linear transformation that dilates points 3 times in the *x*-direction and 4 times in the *y*-direction. Let $L_2: R^2 \to R^2$ be a linear transformation that projects points onto the *y*-axis. Write down the matrix representations of the transformations L_1 and L_2 . What is the matrix representation of L_3 which is L_1 followed by L_2 .

6.	[6+5+5] Consider the three vecto	rs $u = (-2, 1, 3)$,	v = (3, 0, 1) and	w = (0, 3, -7)
----	----------------------------------	-----------------------	-------------------	----------------

(a) Find the scalar triple $u \cdot (v \times w)$.

(b) What is the angle between u and v?

(c) What is the orthogonal projection of u onto v?

7.	[5+3+3+2] Consider the vector space R^4 with the usual inner product. Let
	$S = \{v_1, v_2, v_3\} = \{(1, 0, 1, 0), (0, 1, 0, 0), (2, 0, -2, 0)\}$ be a subset in \mathbb{R}^4 .
	(a) Show that S is an orthogonal set.

(b) Show using definition that S is linearly independent.

(c) What is the coordinate vector of u = (1, 2, -3, 0) with respect to the orthogonal basis S.

(d) Orthonomalize the set S to get an orthonormal set R .

8. [10] Solve the system below using eigenvalues and eigenvectors of its coefficient matrix:

$$\begin{cases} y_1' = y_1 + y_2 \\ y_2' = 4y_1 - 2y_2 \end{cases}$$
, with initial conditions $y_1(0) = 1$, $y_2(0) = 6$.

[If you need space write on back of this page]