Math 221

Major Exam 2

<u>Problem 1:</u> Let f(x) = tanx and $x_0 = 0, x_1 = 0.6, x_2 = 0.9$. Construct interpolation polynomial of degree at most two to approximate f(0.45), and find the absolute error.

<u>Problem 2:</u> Compute the linear least squares polynomial for the following data.

i	x_i	y_i
1	0	1
2	0.25	1.2840
2 3	0.50	1.6487
4	0.75	2.1170
5	1.00	2.7183

<u>Problem 3:</u> Find the least squares polynomial approximation to $f(x) = e^x$ on the interval [0,2].

<u>Problem 4:</u> Use the forward-difference formula to approximate the derivative of f(x) = lnx at $x_0 = 0.1$ using h = .05, and determine bounds for approximation error.

<u>Problem 5:</u> Approximate the following integrals using Trapezoidal rule.

a)
$$\int_0^{0.35} \frac{2}{x^2 - 4} dx$$

b)
$$\int_0^1 x^2 e^{-x} dx$$

<u>Problem 6:</u> Compute the eigenvalues and associated eigenvectors of the following matrix:

$$\begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$

<u>Problem 7:</u> Show that the following initial-value problem has a unique solution. $y' = y \cos(t)$, $0 \le t \le 1$, y(0) = 1.