Prince Sultan University Department of Mathematics and Physical Sciences

Math 221 Final Exam Fall 2014 Wednesday, January 1, 2014

Time Allowed: 90 minutes

Name:				
	Name:			
Student Number:	Student Numbe	r:		

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.

<u>Problem 1:</u> (10 points) Use Newton's method to find a solution accurate to within 10^{-4} for x-cosx=0, $\left[0,\frac{\pi}{2}\right]$.

<u>Problem 2:</u> (10 points) Use fixed point iteration method to determine a solution accurate to within 10^{-2} for $x^3-x-1=0$ on [1,2]. Use $p_0=1$.

<u>Problem 3:</u> (10 points) Let f(x) = cosx and $x_0 = 0, x_1 = 0.6, x_2 = 0.9$. Construct interpolation polynomial of degree at most two to approximate f(0.45), and find the absolute error.

<u>Problem 4:</u> (10 points) Compute the linear least squares polynomial for the following data.

i	x_i	Уi
1	0	1
2	0.15	1.004
3	0.31	1.031
4	0.5	1.117
5	0.6	1.223
6	0.75	1.422

<u>Problem 5:</u> (10 points) Find the linear least squares polynomial approximation to $f(x) = \frac{1}{2}cosx + \frac{1}{3}sin2x$ on the interval [0,1].

<u>Problem 6:</u> (10 points) Approximate the following integrals using Trapezoidal rule.

a)
$$\int_0^{\frac{\pi}{4}} x \sin x \ dx$$

b)
$$\int_0^{\frac{\pi}{4}} e^{3x} \sin 2x \ dx$$

<u>Problem 7:</u> (10 points) Compute the eigenvalues and associated eigenvectors of the following matrix:

$$\begin{pmatrix} 24 & 6 & 0 \\ 0 & 24 & 3 \\ 0 & 0 & 224 \end{pmatrix}$$

<u>Problem 8:</u> (10 points) Show that the following initial-value problem has a unique solution. $y' = -\frac{2}{t}y + t^2e^t$, $1 \le t \le 2$, $y(1) = \sqrt{2}e$.