

Prince Sultan University Orientation Mathematics Program

MATH 111 Major Test III Semester I, Term 141 Sunday, December 21st, 2014

Time Allowed: 50 minutes

Student ID #: _____

Section #: 224

Teacher's Name: Dr. Aiman Mukheimer

Serial Number:

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 4 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1	16	
2,3	22	
4	12	
Total	50	/50

1. (16 points) Find the derivatives of the functions below

(a)
$$y = \sqrt[5]{\frac{\cot(x+1)}{(2x+3)^3 \cdot \sqrt{x}}}$$
 (using logarithmic differentiation)

(b)
$$\frac{e^{xy}}{y+e^{2x}} = x$$

(c)
$$x^7 y = \cosh(xy)$$

(d)
$$y = (\cos x)^{\ln x}$$

2. (2+4=6 points) Consider the function $f(x) = x^3 + x - 1$, on the interval [0,2]. Verify that it satisfies the conditions of the Mean Value Theorem. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

- 3. (16 points) Given function f by $f(x) = 2 + 2x^2 x^4$
 - (a) Find the critical points of f and the regions of increase and regions of decrease.

(b) Find the local minimum points and local maximum points.

- (c) Study the inflection points and concavity regions.
- (d) Find the absolute maximum point and absolute minimum point for f on [-1,1].

4. (12 points) Use L'Hospital's rule to get the limits below

a)
$$\lim_{x \to \infty} \frac{(\ln x)^2}{x}$$

b)
$$\lim_{x \to 0^+} (\cos x)^{\frac{1}{x^2}}$$

c)
$$\lim_{x\to\infty}(xe^{1/x}-x)$$

-1)	$\lim \frac{\tanh x}{x}$	
a)	$\lim_{x \to 0} \frac{1}{\tan x}$	