

Prince Sultan University Department of General Seciences MATH 111 Final Exam

Semester 2, Term 162 Saturday, May 13th, 2017, Time Allowed <u>**3 hours**</u>

Student Name:	
Student ID #:	Section #:
Teacher's Name:	Serial #

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 13 problems, some with several parts.

Problems	Max points	Student's Points
1	15	
2-4	14	
5-7	17	
8-10	17	
11	19	
12-13	18	
Total	100	% =/40

1. (2+2+3+3+5 pts) Find the derivative *y* 'of each problem below.

(a)
$$y = e^{\sin 2x} + \sin\left(e^{2x}\right)$$

(b)
$$y = (z^2 + e^z)\sqrt{z}$$

(c)
$$y = \tan^4 \left[\ln (5x+6) \right]$$

(d) $f(\theta) = \theta^6 \cos 2\theta \sin 3\theta$

(e)
$$x^2 + xy + y^2 = 3\tan^{-1}(y) + \cosh(y)$$

2. (6 pts) For what value of the constants *a* and *b* is the function *f* continuous on $(-\infty, \infty)$

$$f(x) = \begin{cases} \frac{25x+25}{\tan(x+1)} & \text{if } x < -1 \\ b \cdot x^2 - 9 & \text{if } -1 \le x \le 0 \\ a \cdot x^{\sqrt{x}} & \text{if } x > 0 \end{cases}$$

3. (4 pts) Find an equation of the normal line to the curve $y^2(y^2-4) = x^2(x^2-5)$ at the point (0,-2)

4. (4 pts) Find the 10^{th} derivative of $y = \cos 2x$

5. (5 pts) Find the derivative of $y = (\sin x)^{\ln x}$

6. (6 pts) A ladder 5m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 0.2m/s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 3m away from the wall?

7. (6 pts) A water tank has the shape of a circular cone with base radius 2m and height 8m. If water is being pumped into the tank at a rate of $3m^3/min$, find the rate at which the water level is rising when the water is 2m deep.

8. (5 pts) Find the derivative of $y = (\operatorname{sech} x)(1 + \ln \operatorname{sech} x)$, simplify as much as possible.

9. (6 pts) Find the absolute max. and min. of $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ on the interval [-2,3]

10. (6 pts) Sketch the graph of a function that satisfies the following conditions: f'(5)=0, f'(x)<0 over the interval $(-\infty,5)$, f'(x)>0 when over the interval $(5,\infty)$ f''(2)=0, f''(8)=0, f''(x)<0 over the interval $(-\infty,2)\cup(8,\infty)$, f''(x)>0 over the interval (2,8) $\lim_{x\to\infty} f(x)=3 \lim_{x\to\infty} f(x)=3$ 11. (3+3+3+5+5 pts) Use <u>L'Hospital's Rule</u> to evaluate the following limits:

a)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4}$$

b)
$$\lim_{x \to 1} \frac{\ln x}{\sin \pi x}$$

c)
$$\lim_{x\to 0}\frac{x3^x}{3^x-1}$$

d)
$$\lim_{x \to -\infty} x \ln\left(1 - \frac{1}{x}\right)$$

e) $\lim_{x\to 0^+} (4x+1)^{\cot x}$

12. (6 pts) Find the critical numbers of $f(x) = (x-4)\sqrt[3]{x}$.

13. (12 pts) Sketch a complete graph of $y = 6x^{\frac{1}{3}} + 3x^{\frac{4}{3}}$. Find the domain and the *x* and *y* intercepts, if any. Find the horizontal and vertical asymptotes, if any. Find the coordinates of the local max and/or min, if any. Find the intervals of increase, decrease, concave up and concave down. Find the inflection point(s).