Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

ORIENTATION MATHEMATICS II		MATH 002	FINAL EXAM		
Semester:	FALL Semester Term	181			
Date:	Saturday December 15,	2018 (4:00 P.M.)			
Time Allowed:	120 minutes				

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	10	10	21	17	22	80	40

<u>Q.1 (20 points)</u> Choose the correct answer

1) The phase shift of
$$y = \frac{1}{2}\cos(4x + \pi)$$
 is:
A) $\frac{-4}{\pi}$
B) $\frac{\pi}{4}$
C) $\frac{-\pi}{4}$
D) -4π
2) If $\sin x = -\frac{\sqrt{5}}{3}$ and $\cos x = -\frac{2}{3}$, then $\cot x =$
A) $-\frac{\sqrt{5}}{2}$
B) $\frac{2}{\sqrt{5}}$
C) $\frac{\sqrt{5}}{2}$
D) $-\frac{2}{\sqrt{5}}$

3) $\sec x \cdot \sin x =$

- A) $\csc x$
- B) $\cot x$
- C) $\cos x$
- D) $\tan x$

4) Find the side labeled x

- A) 40.98
- B) 40.61
- C) 19.53
- D) 31.73

5) Find the vertex and directrix of the parabola $(y+8)^2 = -32x+32$

- A) Vertex (1, -8), directrix x = 9
- B) Vertex (-8,1), directrix x = -32
- C) Vertex (1,-8), directrix y=9
- D) Vertex (-1, 8), directrix y = 9

You must write the correct answer to each question in the box below

Question	1	2	3	4	5
Answer					

6) Solve
$$\begin{bmatrix} 2 & x \\ 6 & 0 \end{bmatrix} \begin{bmatrix} y & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -6 & 18 \end{bmatrix}$$
 for x and y.
A) $x = \frac{3}{2}, x = -\frac{3}{2}$
B) $x = -\frac{3}{2}, y = -1$
C) $x = -2, y = -1$
D) $x = -\frac{3}{2}, y = -2$

7) Find the domain of the function. $h(x) = \ln(x^2 - 9)$ A) $(-\infty, -9) \cup (9, \infty)$

- B) (-3,3)
- C) $(-\infty, -3) \cup (3, \infty)$
- D) $(-\infty,\infty)$

8) Expand the logarithmic expression. $\log\left(\frac{x^3}{\sqrt{y}(x-2)^6}\right)$

A)
$$\frac{1}{3}\log x - \frac{1}{2}\log y - 6\log(x-2)$$

B) $3\log x - \frac{1}{2}\log y + 6\log(x-2)$
C) $3\log x - 2\log y - 6\log(x-2)$
D) $3\log x - \frac{1}{2}\log y - 6\log(x-2)$

9) Find the complete solution of the system.
$$\begin{cases} x+y+z=2\\ 2x-3y+2z=4\\ 4x+y-3z=1 \end{cases}$$

- A) (1,0,1)
- B) (5,0,1)
- C) (0,1,-1)
- D) (0, -2, 2)

10) Which point is a solution to the inequality: $y \le 3x - 1$?

- A) (0,0)
- B) (2,5)
- C) (-1,1)
- D) (-2,0)

You must write the correct answer to each question in the box below

Question	6	7	8	9	10
Answer					

Q.2 (5 points) Use a sketch to write the following expression as an algebraic expression.

Assume that x is positive. $\cot\left[\sin^{-1}\left(\frac{x}{\sqrt{x^2+4}}\right)\right]$

Q.3 (6 points) Suppose that $\sin \alpha = \frac{4}{5}$, α is in quadrant *II* and $\cos \beta = \frac{1}{2}$, β is in quadrant *IV*. Find the exact value of $\cos(\alpha + \beta)$

Q.4 (6 points) Solve the trigonometric equation: $5\sin(x) = 3\sin(x) + \sqrt{3}$, $0 \le x < 2\pi$

Q.5 (4 points) Use an addition or subtraction formula to find the exact value of the expression: $\cos(195^{\circ})$

Q.6 (10 points) Use Gauss-Jordan to solve the system: $\begin{cases} x+3y+6z=-2\\ y-3z=7\\ 2x+4y+10z=-2 \end{cases}$

Q.7 (7 points) Use Cramer's Rule to find the value of x only: $\begin{cases} x + 2y - z = 3 \\ x + 2z = 1 \\ 2x - y + 4z = 1 \end{cases}$ Don't find the values of y and z.

Q.8 (4 points) Let
$$\begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$$
 be the inverse of the coefficient matrix of
$$\begin{cases} x - y + z &= 8 \\ 2y - z &= -7 \\ 2x + 3y &= 1 \end{cases}$$
Solve the system of equations.

Q.9 (6 points) Find the standard form of the equation of an ellipse with a vertical major axis of length 18, and a minor axis of length $2\sqrt{7}$, and center at (-1,3).

Q.10 (12 points) For the conic section: $9y^2 - 4x^2 - 18y + 24x - 63 = 0$, find the coordinates of the center, vertices and foci. Then sketch the graph.

