Prince Sultan University

Deanship of Educational Services
Department of Mathematics and General Sciences

COURSE DETAILS:

ORIENTATION	MATHEMATICS II	MATH 002	FINAL EXAM	A
Semester:	Spring Semester Term 182			
Date:	Saturday April 20, 2019 (4:00	P.M.)		
Time Allowed:	180 minutes			-

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Total	Total
Questions								
Marks	10	10	20	20	18	22	100	40

Q.1A (20 points) Choose the correct answer

- 1) Find the length of the major axis of: $\frac{x^2}{4} + \frac{y^2}{9} = 1$
 - A)13
 - B) 6
 - C) 4
 - D) 9
- 2) The Equation of the parabola with vertex (-1,3) and directrix x = -4 is:
 - A) $(x+1)^2 = 12(y-3)$
 - B) $(y-3)^2 = 12(x+1)$
 - C) $(y-3)^2 = 28(x+1)$
 - D) $(x+1)^2 = -12(y-3)$
- 3) Find the **range** of the function $f(x) = e^{-x+3} + 5$.
 - A) $(3,\infty)$
 - B) $(-\infty,5)$
 - C) $\left(-\infty,3\right)$
 - D) $(5, \infty)$
- 4) The expression $3\log_2(3) + \log_2(5) \log_2(9)$ is equivalent to:
 - A) $3\log_2(-1)$
 - B) $3\log_2\left(\frac{15}{9}\right)$
 - C) $\log_2(5)$
 - D) $\log_2(15)$
- 5) The equation of the ellipse in standard form with vertices: (-8,0), (8,0), and foci: (-5,0), (5,0) is:
 - A) $\frac{x^2}{64} + \frac{y^2}{39} = 1$
 - B) $\frac{x^2}{25} + \frac{y^2}{39} = 1$
 - C) $\frac{x^2}{25} + \frac{y^2}{64} = 1$
 - D) $\frac{x^2}{39} + \frac{y^2}{64} = 1$

Question	1	2	3	4	5
Answer					

- 6)A The **horizontal phase shift** of the function $y = -3\cos\left(\frac{\pi}{2}x + 2\pi\right)$ is:
 - A) 4 units to the left
 - B) 4 units to the right
 - C) 2 units to the left
 - D) 2 units to the right
- 7) Solve the equation: $\cos(2x) = \frac{\sqrt{2}}{2}$ for x in $[0, 2\pi)$
 - A) $0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}$
 - B) $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
 - C) $\frac{\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{15\pi}{8}$
 - D) $\frac{\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{23\pi}{6}$
- 8) For what value of b is sin(b+x) = cos(x)
 - A) $-\frac{\pi}{2}$
 - B) $\frac{\pi}{2}$
 - C) π
 - D) 2π
- 9) Solve the equation: $3\log(4x-30)=3$
 - A) x = 10
 - B) $x = \frac{31}{4}$
 - C) $x = \frac{33}{4}$
 - D) x = 1
- **10)** The equation $x^2 + 2x y^2 4y + 9 = 0$ is for:
 - A) Circle
 - B) Parabola
 - C) Hyperbola
 - D) Ellipse

Question	6	7	8	9	10
Answer					

Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

ORIENTATION	MATHEMATICS II	MATH 002	FINAL EXAM	В
Semester:	Spring Semester Term 182			
Date:	Saturday April 20, 2019 (4:00	P.M.)		
Time Allowed:	180 minutes			

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

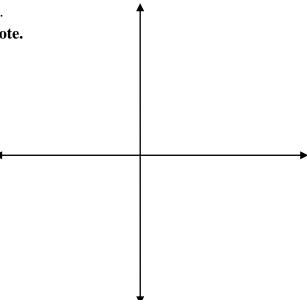
- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Total	Total
Questions								
Marks	10	10	20	20	18	22	100	40

Q.1B (20 points) Choose the correct answer

- 1) Solve the equation: $3\log(4x-30)=3$
 - A) x = 1
 - B) $x = \frac{33}{4}$
 - C) x = 10
 - D) $x = \frac{31}{4}$
- 2) The **horizontal phase shift** of the function $y = -3\cos\left(\frac{\pi}{2}x + 2\pi\right)$ is:
 - A) 4 units to the right
 - B) 2 units to the left
 - C) 2 units to the right
 - D) 4 units to the left
- 3) For what value of b is $\sin(b+x) = \cos(x)$
 - A) $\frac{\pi}{2}$
 - B) 2π
 - C) $-\frac{\pi}{2}$
 - D) π
- 4) Solve the equation: $\cos(2x) = \frac{\sqrt{2}}{2}$ for x in $[0, 2\pi)$
 - A) $\frac{\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{15\pi}{8}$
 - B) $0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}$
 - C) $\frac{\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{23\pi}{6}$
 - D) $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
- 5) The equation $x^2 + 2x y^2 4y + 9 = 0$ is for:
 - A) Ellipse
 - B) Hyperbola
 - C) Parabola
 - D) Circle


Question	1	2	3	4	5
Answer					

- 6)B The expression $3\log_2(3) + \log_2(5) \log_2(9)$ is equivalent to:
 - A) $\log_2(5)$
 - B) $\log_2(15)$
 - C) $3\log_2(-1)$
 - D) $3\log_2\left(\frac{15}{9}\right)$
- 7) The Equation of the parabola with vertex (-1,3) and directrix x = -4 is:
 - A) $(x+1)^2 = -12(y-3)$
 - B) $(y-3)^2 = 28(x+1)$
 - C) $(x+1)^2 = 12(y-3)$
 - D) $(y-3)^2 = 12(x+1)$
- 8) Find the length of the major axis of: $\frac{x^2}{4} + \frac{y^2}{9} = 1$
 - A) 4
 - B) 9
 - C) 6
 - D) 13
- 9) Find the **range** of the function $f(x) = e^{-x+3} + 5$.
 - A) $\left(-\infty,5\right)$
 - B) $(3,\infty)$
 - C) $(5,\infty)$
 - D) $\left(-\infty,3\right)$
- 10) The equation of the ellipse in standard form with vertices: (-8,0), (8,0), and foci: (-5,0), (5,0) is:
 - A) $\frac{x^2}{25} + \frac{y^2}{64} = 1$
 - B) $\frac{x^2}{64} + \frac{y^2}{39} = 1$
 - C) $\frac{x^2}{39} + \frac{y^2}{64} = 1$
 - D) $\frac{x^2}{25} + \frac{y^2}{39} = 1$

Question	6	7	8	9	10
Answer				_	

Q.2 (6 points) Sketch the graph of $f(x) = 3 - \log_2(x-1)$.

Give the Domain, Range, and the equation of the asymptote.

Q.3 (5 points) Solve the equation: $5e^{2x-1} + 7 = 27$

Show all your steps

Q.4 (4+5 points) Solve the equation:

- a) $3\tan(x).\sin(x) 2\tan(x) = 0$; $0 \le x < 360^{\circ}$

b) $\sin^2(x) = 4 - 5\cos^2(x)$; $x \in [0, 2\pi)$

Q.5 (6 points) Verify the identity
a)
$$1 - \frac{\sin^2 \theta}{1 + \cos \theta} = \cos \theta$$

b)
$$\frac{\sin x + \tan x}{\tan x} = 1 + \cos x$$

Q.6 (6 points) Let $\tan \theta = -\frac{2}{5}$ and $\cos \theta < 0$. Find the exact value of **the remaining trigonometric functions** of θ .

Q.7 (8 points) Solve the matrix equation: $A.X + 5I_2 = A.B$ for X given that:

$$A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -4 & 5 \\ 2 & -3 \end{bmatrix}.$$

Q.8 (4+2+4 points) If
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 5 \\ -2 & 1 & -7 \end{bmatrix}$$

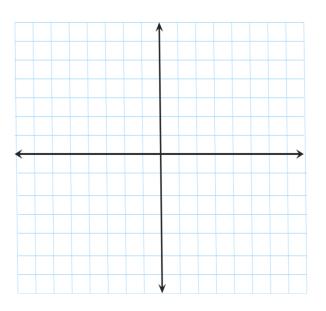
a) Find the **determinant** of A.

- b) Does matrix A have an inverse? Give the reason.
- c) Use Cramer's Rule to solve the system of equations for \underline{x} only: $\begin{cases} -2y + z = 2 \\ -2x 3y = 0 \\ x y + z = 1 \end{cases}$

Q.9 (8 points) Solve the following system of equations using the **inverse of the coefficient matrix**, A^{-1} (Write the solution set, if any)

$$x - y = 7$$

$$3x + 2z = -2$$


$$-x-z=4$$

Q.10 (6 points) Find the coordinates of the vertex and the focus and the equation of the directrix.

$$y^2 - 6y + 8x - 31 = 0$$

Q.11 (10 points) Consider the equation,
$$\frac{(y-3)^2}{4} - \frac{(x+1)^2}{16} = 1$$
.

a) Find the coordinates of the center, the foci, and the vertices

- b) Graph the equation.
- c) Give the equations of the asymptotes.

Q.12 (6 points) Find the standard form of the equation of the ellipse with the vertices at (-3,-2), (9,-2)and a minor axis of length 6.