

Prince Sultan University Department of Mathematical Sciences

MATH 002 Final Examination Semester II, Term 162 Saturday, May 20, 2017 Time Allowed: 3 hours

Student Name:							
Student ID #:							
			Se	ection			
Dr. Thabet		Dr. Bahaa'	Dr. Nabil		Mr. Khaled		Dr. Jehad
1 2p.m.	1112	1011	9 10	1011	11 12	8 9	89
398	399	545	403	404	397	544	402

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. If your mobile phone is seen or heard, your exam will be taken immediately.
- 6. You must show all your work beside the problem. Be organized.
- 7. You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.
- 8. This examination has 18 problems. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1,2,3	13	
4,5,6,7,8	20	
9,10	14	
11,12,13	18	
14,15	15	
16,17,18	20	
Total	100	

Q.1 (6 points) Find the **solution set** for each of the following equations.

a)
$$3^{2x} + 3^x - 2 = 0$$

b)
$$\log_2(x-3) = 2 + \log_2(x+2) - \log_2(x)$$

Q.2 (3 points) Let $f(x) = \log_5(x+1) - 2$. Find $f^{-1}(x)$.

Q.3 (4 points) (4 points) Use the graph to find the value of **distance** x.

Q.4 (3 points) Fill in the required information.

Function	Domain	Range	Horizontal Asymptote equation, if any	Vertical Asymptote equation, if any
$f(x) = 4 - \log_5(x+3)$				
$f(x) = -2e^{x-1} + 6$				

Q.5 (3 points) In a circle of radius 20 centimeters, find the **length of the arc** intercepted by a central angle measuring 75° . (Round your answer to 2 decimal places)

Q.6 (4 points) If $\sin \theta = \frac{1}{4}$ and θ is acute angle, find the **exact value of** $\cos \left(\theta + \frac{\pi}{3}\right)$.

Q.7 (6 points) Given $\tan \theta = -\frac{2}{5}$ and $\csc \theta > 0$, find the exact value of the **remaining trigonometric** functions of θ

Q.8 (4 points) The formula $C = 15750 + 5259 \ln(x)$ models the average cost of a new car x years after 2010. When (what year) will the average cost of a new car be \$30,000?

Q.9 (6 points) Find the exact value. Show all your steps and don't use a calculator directly. a) $\cot\left(\frac{71\pi}{3}\right)$

b) sin(315°)

c) $\sin 17^{\circ} \cos 43^{\circ} + \cos 17^{\circ} \sin 43^{\circ}$

$$y = 3\sin\left(2x - \frac{\pi}{2}\right) + 2$$

Q.12 (4 points) **Verify** the identity:
$$\frac{\sec \theta - \sin \theta \tan \theta}{\cos \theta} = 1$$

Q.13 (8 points) Given
$$A = \begin{bmatrix} 0 & -2 & 4 \\ 2 & 4 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ -1 & -4 \\ 1 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & -6 \\ 4 & -11 \end{bmatrix}$. Find the following.
a) $A \cdot B - 3C$

b) C^{-1}

Q.14 (8 points) Given
$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
. Find the inverse matrix, A^{-1} , if it exists.

Q.15 (7 points) Solve the following system using the method of your choice.

2x+6y+z = 2 -y-z = 3-x-2y+z = -1 Q.16 (8 points) Consider the equation: $16x^2 + 4y^2 - 32x + 16y - 32 = 0$

- a) Write the **equation in standard form**.
- b) Determine the center and the vertices.
- c) Graph the equation and locate the foci.

Q.17 (5 points) Let x = 4 be the equation of the directrix and (-2,3) be the focus of the parabola. Write the **standard equation** of the parabola.

Q.18 (7 points) Graph the solution set of the system of inequalities

(Make sure to determine the **region of the solution set** and show it on **graph**)

	$x + y \le 2$
ł	$-2 \le x < 1$
	$y \ge -3$

